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Abstract. In order to supply a growing tissue with oxygen and nutrients and
to remove its metabolic wastes, blood vessels penetrating the tissue are formed.
Multiple mechanisms are involved in this process ranging over many orders of
magnitude: chemical signaling on the bio-molecular level (10−9m), genetic pro-
gram on the protein level (10−7m), microscopic mechanical cell interactions
(10−5m) and external forces and stresses reaching macroscopic scales
(> 10−3m). Better physiological understanding of this phenomenon could re-
sult in many useful medical applications, for example in gene therapy or cancer
treatment. We present a simulation framework to study mechanical aspects of the
micro-vascular growth using techniques from computational geometry, solid me-
chanics, computational fluid dynamics and data visualization. Vasculogenesis is
modeled as traction driven remodeling of an initially uniform tissue in absence
of blood flow. Angiogenesis, the subsequent formation and maturation of blood
vessels, is handled as a flow driven remodeling of a porous structure resulting
from the preceding stage. The mechanical model of tissue response to the trac-
tion forces successfully predicts spontaneous formation of primitive capillary net-
works. Furthermore, we demonstrate that a shear-stress controlled remodeling of
such structures can lead to flow fingering effects observed in real cellular media.
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1 Introduction

Experimental studies confirm that physical forces, including tension, stretching or com-
pression, and flow derived quantities like shear stress influence growth and remodeling
in living tissues at the cellular level. In particular, it is known that alignment and struc-
tural remodeling of endothelial cells can be modulated by mechano-chemical interac-
tions (e.g. [1], [2] and references therein). It is therefore reasonable to assume that
physical interactions between blood flow and endothelial cells play an important role
in capillary formation during the vascularization of a growing tissue. For example, [3]
demonstrated that flow driven remodelling of transcapillary tissue pillars in the absence
of cell proliferation is decisively involved in micro-vascular growth in the chick chorio-
allantoic membrane. We have recently given a detailed overview of existing mathemat-
ical models of vascular growth ([4]). The approaches listed there are generally success-
ful in predicting physiologically realistic systems with relevant biophysical properties,
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but do not attempt to explain the origin of such structures in a microscopic sense. In
addition, they either do not address blood flow effects at all, or only implicitly via
Poiseuille’s Law. In the same paper we have demonstrated that a simple mechanistic
model of an explicit tissue response to blood flow suffices to reproduce bifurcation
formation and micro-vessel separation from the underlying capillary bed. Structures re-
sulting from the simulations are comparable to real experimental cases (see e.g. [5])
even though the tissue remodeling procedure used in the model is very primitive. The
tissue is treated only in a statistical fashion as a set of independent pixels. This allows a
very simple treatment of cellular transport but limits possibilities to model the tissue’s
elastic properties.

In this study we further investigate mechanical aspects of micro-vessel formation
but using more realistic physical modeling of the tissue. In contrary to the previous ap-
proach, we now treat the tissue as a deformable object and explicitly address its elastic
properties. In addition, we now differentiate between the early capillary plexus forma-
tion (vasculogenesis) and its subsequent remodeling (angiogenesis). Vasculogenesis is
modeled as traction driven reshaping of an initially uniform tissue represented by a
mass-spring mesh. In subsequent steps, as a result of fluid-structure interactions and
elastic modeling of the tissue’s interior, the emerging clusters elongate, align with the
flow and merge with their neighbors, which is a prerequisite for the formation of new
generations of blood vessels. In order to provide better solution accuracy at the fluid-
structure interfaces, where the shear stress is of primary interest, we now also make
use of irregular triangular grids. Such meshes can accurately map complex domains
but require more advanced formulation of the flow equations than in case of an isomet-
ric Cartesian grid. Moreover, this implies additional difficulties in case of dynamically
changing boundaries. Due to permanent modifications of the boundary conditions an
efficient re-meshing is necessary for the required adaptation of the domain.

In the following section we will explain how we model the elastic response of the tis-
sue and show that it suffices to explain formation of primitive capillary networks. In the
next section the geometrical domain will be defined and the corresponding mesh gener-
ation technique will be described. Afterwards we will show how we remodel the system
using fluid-structure interactions and demonstrate how this leads to the elongation and
alignment of the tissue clusters. Finally, in the concluding section we summarize the
approach, indicate its implications and propose future developments.

2 Tissue Modeling

We start by assuming that living cells consist of a soft matrix (cytoplasm) structurally
strengthened by stiff elastic fibers (cytoskeleton). We further assume that a growing tis-
sue increases its volume introducing stretching forces in these fibers, which eventually
lead to their spontaneous breaking. At least in the first approximation it is natural to
model a system of cytoskeleton fibers as a mesh, where uniformly distributed masses
are connected by elastic springs. To describe the behavior of such a mass-spring mesh
we start with Newton’s equation of motion and assume that the external forces are the
sum of linear spring deformation forces (the Hook’s Law) and non-conservative inter-
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Fig. 1. Computer simulation of a traction-driven remodeling of an initially uniform mesh. The
springs are gray- and width- coded according to their stretching forces

nal friction forces due to energy dissipation in cytoskeletal fibers. The resulting motion
equation in a matrix form is

M
d2r

dt2
+ D

dr

dt
+ Kr + F ext = 0 , (1)

where M is the mass matrix, D damping matrix, K stiffness matrix, r is the vector
containing the nodal coordinates and F ext is storing all other external forces (if any).
This second order ordinary differential equation is solved numerically using a finite
difference scheme. After substituting dr/dt = v and some algebraic rearrangements
we obtain the discrete form of the equation, which we use to update the nodal velocities:

vn+1 =
1

1 + D∆t
M

(
vn +

∆t

M
(F K + F ext)

)
, (2)

with vt being a vector of nodal velocities at iteration t and F K the spring deformation
forces. Now the nodal positions can be obtained using a simple time integration:

rn+1 = rn + vn∆t . (3)

A detailed description of the mesh generation procedure will be given in the next
section. Here we start from a given uniform unstructured triangular grid covering a
unit square. As already mentioned before, we assume that a growing tissue increases its
volume and thus stretches its structural fibers. If we start to selectively remove springs
that are stretched over a given threshold (damage due to exceeding their mechanical
resistance), the initially regular mesh remodels into a set of tissue pillars forming a
micro-tubular network, exactly as observed in early stages of vasculogenesis. Fig. 1
shows a few stages of the remodeling process on selected fragments of the whole mesh
consisting roughly of 12,000 nodes and 35,000 springs. The springs are width- and
gray-coded according to their stretching forces. Our computational model allows to
generate results comparable to those presented e.g. in [6] or [7], but as opposed to them,
it is not based on a complex mathematical formalism. We do not model cells as scalar
fields but base our modeling entirely on physical principles. As we explicitly address the
tissue’s elastic fibers we do not face numerical difficulties arising from e.g. modeling of
surface tension inherent to a density representation. Fig. 2 shows a comparison of one
of our remodeling results with a real experimental case found in [7].
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Fig. 2. Left: in vitro angiogenesis experiment from [7] ( c© Elsevier, reprinted with permission).
Right: computer simulation of a traction-driven remodeling of an initially uniform mesh

3 Domain Definition and Mesh Generation

In the previous section we demonstrated how simple mechanistic modeling of cytoskele-
tal fibers can explain spontaneous formation of micro-channels in an initially homoge-
neous tissue prior to the actual blood flow. Now we investigate the behavior of the
newly created micro-tubules as the blood starts flowing. We note that the resulting
network can alternatively be viewed as a set of tissue clusters and the capillaries as
narrow passages between them. We now want to approximate the emerging tissue clus-
ters by deformable rings surrounded by an external membrane immersed in the fluid
flowing around them. In order to create such rings as well as to generate appropriate
meshes necessary to numerically solve the flow equation we need to provide a domain
geometry. For that purpose we represent the clusters as polygons, we emit test rays
from their centers and run an automatic search for the nearest springs intersecting with
them. This information allows us to inspect the topological connections necessary for
polygon reconstruction. Unfortunately, the contracting meshes produce many undesired
topological artifacts like springs with zero length, degenerated nodal positions or highly
non-homogeneous distribution of nodes on the cluster boundary edges. To correctly -
and still automatically - reconstruct the polygons these special cases have to be differen-
tiated and handled properly. Additional problems arise from very narrow passages that
are often formed between pillars. In an extreme case one tubule is represented by only
one spring. This introduces additional difficulties into the mesh generation procedure
which we address here either by mesh refinement or by merging the two polygons if
refinement leads to excessive mesh sizes.

Once the polygons are available we proceed by generating a mesh. We distribute
masses inside the domain boundary and outside the interior polygons. Then we create
topological connections between the masses using the Delaunay triangulation. Next,
we remove all the triangles that lie outside the domain or inside any polygon. The
triangles that are left are broken up into a unique set of springs and each spring is
assigned a rest length being a desired mesh edge length at this place. When just one
rest length is assigned to all the springs, a uniform (isometric) mesh will form. To
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achieve refinement near boundaries one can assign different rest lengths for different
springs according to e.g. distances to the nearest boundary or local curvature. Once the
rest lengths are assigned, the masses are charged electrically and allowed to evolve.
Then re-triangulation is performed to correct for any crossing springs, and the same
deformation procedure is applied as described in the preceding section. In addition,
the masses that come close enough to the boundary segments are snapped to them and
not allowed to detach any more. After some iterations this simple method generated
triangular meshes of sufficient quality but the time performance turned out to be very
low, mostly because of N2 cost of electromagnetic interactions. The performance was
significantly improved when magnetic repulsion between the masses was replaced by a
slight increase in the desired spring rest lengths to form an ”internal pressure” [8].

Fig. 3. Left: visualization of velocity in a fragment of a micro-capillary network presented in the
previous figures. Right: a fragment of a mesh used to solve the flow equations

4 Flow Equations and Flow-Tissue Interactions

To simulate a structural remodeling of a capillary micro-network the key issue is finding
the distribution of forces acting in such a physical domain. To calculate flow conditions
we use numerical techniques from computational fluid dynamics. The general form of
the Navier-Stokes equation for an incompressible Newtonian fluid is

ρ
∂v

∂t
+ ρ(v · ∇)v = η∇2v −∇p + F (4)

∇ · v = 0 , (5)

where ρ is the fluid’s density, η the absolute viscosity, p the pressure, v the velocity
and F denotes external forces. Eq.4 represents momentum balance and Eq.5 describes
fluid continuity. In the case of creeping flow in capillaries the viscous forces are much
stronger than the inertial forces and the convective part of the momentum equation does
not need to be included. To describe a steady flow in the absence of external forces
the time dependent and body force contributions can also be neglected and the Navier-
Stokes equations can be rewritten as:

∇p = η∇2v (6)

∇ · v = 0 . (7)
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The steady-state discretization results in a system of equations with the form:

Au
P uP + Au

i ui = Qu
P (8)

Av
P vP + Av

i vi = Qv
P (9)

aivi · n̂i = 0 , (10)

with A being the domain dependent coefficient matrix, Q the source terms defined by
the boundary conditions, a face surface, n̂ face normal, u, v velocity components and
using the Einstein summation over direct cell neighbors and the compass notation as
in [9]. The formulation used above is the same that we already presented for the finite
difference discretization [4], but the coefficients are different and have to be derived
separately for the finite volume discretization on unstructured triangular meshes. As
these equations have to hold true for every volume element in the mesh, we formulate
this as a linear problem Ax = b, where x is a vector of unknown velocity components
and pressure values, A is a domain dependent coefficient matrix and b is defined by the
boundary conditions. Unfortunately, Eqs. 8-10 are not suitable for modeling pressure,
as pressure is not even present in the continuity equation and is very weakly coupled
with the velocity components. Solving such a system of equations in a standard way (i.e.
simultaneously) results in oscillatory pressure solutions, therefore this case needs spe-
cial treatment. To address this problem we adapted the smoothing pressure correction,
originally presented for orthogonal grids [10], for the case of unstructured triangular
meshes. We continue by solving the partial differential equations on the meshes, gener-
ated as described in the previous section (see Fig. 3). This results in velocity and pres-
sure values in the center of each volume element. We assume that eventual evolution of
the tissue is governed only by shear-induced traction forces at the boundary, which is
well justified from experimental observations. We derive now viscous tractions on the
boundary walls using the obtained velocity maps and distribute them onto the original
mass-spring mesh nodes. Note, that we use two different meshes, a homogeneous one
for the mass-spring deformation and an adaptive one for the discretization of the flow
equations. This technique is known as a dual mesh approach. Now the original mesh
is allowed to deform determining a new geometry and the whole procedure is repeated
in a loop. Blood velocity is visualized by reconstructing nodal velocities from the tri-
angle centers (by solving a linear problem) and using OpenGL to plot triangles with
linear color interpolation. Unfortunately, simply letting the pillars hang freely, without
addressing their internal structure, does not lead to any realistic remodeling. The pillars
are only pushed aside all together, somewhat changing shape, but almost entirely pre-
serving distances between them. Even though preferred paths of flow are clearly visible
if the velocity is visualized (see gray-coded velocity plot in Fig. 3), we found no tenden-
cies for the pillars to elongate and merge to form any kind of corridors or future vessel
walls. The alignment of the tissue clusters and their interactions with the neighbors,
however, are prerequisites for any vessel formation. Before any large scale simulations
can take place, a better model of the dynamic behaviour of single tissue clusters has
to be found. We assumed that the mechanical model involved in this case, ignoring the
internal structure of the pillars, was not sufficient to correctly reproduce the required
local phenomena. We concluded that the pillars were not just holes, but deformable
membranes filled with elastic tissue - a structure having certain physical properties.
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The springs that we used so far corresponded then to extracellular bindings. Additional
springs, much stiffer in order to mimic behavior of solid clusters immersed in a jelly
matrix, should now be placed in the pillar interiors, and the whole structure should
be separated from the external matrix by a membrane. The structural arrangement of
skeletal micro-filaments in cells is not trivial and its proper modeling can be crucial
for obtaining correct results. We surround a cell with a membrane that is able to sense
shear stress around itself and evaluate its average value. Then we make internal con-
nections between all the membrane’s nodes using springs 10 times stiffer than springs
in the surrounding matrix. Now, if a part of the membrane senses shear stress higher
than average, it will transmit contracting forces to all the internal filaments connected
to the activated part. In contrary, if somewhere on the membrane shear stress lower than
average is sampled, stretching is induced. Such mechanics successfully predicts elon-
gation of a disk placed in a viscous flow (see Fig. 4). The same procedure applied to
a bigger mesh is presented in Fig. 5. As can be seen from the figures, pillars finally
elongated, aligned with the flow and subsequently merged with the neighbors, resulting
in a chain which is the basic pre-condition for the formation of a future vessel wall.
Based on this more realistic model of single cluster dynamics, further investigations on
much bigger domains can be performed. If few pillars demonstrate clear tendencies to
align and form chains, chances for micro-tubule formation in large scale simulations
(involving e.g. thousands of such clusters) become realistic. This will, however, require
computer code parallelization and other super-computing techniques due to excessive
demand on computational resources that modeling of such domains would require.

Fig. 4. Deformation of a disk due to its internal mechanics. Flow coming from the left

Fig. 5. Elongation of the tissue pillars, alignment with the flow and subsequent merging with
neighbors - geometry at different iterations

5 Conclusions

We have presented a multi-physics simulation framework to study mechanical aspects
of vascular system formation. We use techniques from solid mechanics to model tissue
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response, computational geometry to generate meshes needed to solve partial differen-
tial equations, computational fluid dynamics to provide flow conditions in the cellular
medium and fluid-structure interactions to simulate tissue remodeling. The simulations,
visualized using OpenGL, reveal that mechanical traction forces rebuild an initially
homogeneous tissue into a micro-tubular network, as observed in early stages of vas-
culogenesis. By visualizing blood velocity in such networks we find paths of preferred
flow, suggesting future formation of some flow corridors or walls. By addressing the in-
ternal structure of the emerging cell clusters we demonstrate their alignment in the flow
and tendencies to merge with the neighbors to form chains, which is a prerequisite for
future micro-tubule formation. Once a realistic model of single cell clusters is available,
large scale simulations, using super-computing due to excessive domain sizes, can be
performed in future investigations.
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