
Modelling Dynamics of Genetic Networks as a
Multiscale Process

Xilin Wei, Roderick V.N. Melnik, and Gabriel Moreno-Hagelsieb

Mathematical Modelling and Computational Sciences,
Wilfrid Laurier University,

75 University Ave W, Waterloo, Ontario, N2L 3C5, Canada

Abstract. A key phenomenon in the dynamics of genetic networks is
the cell cycle. In the study of this phenomenon, an important task is to
understand how many processes, acting on different temporal and spatial
scales, interact in the cell.

In this paper we deal with the problem of modelling cell cycles. We
start our analysis from the Novak-Tyson model and apply this deter-
ministic model to simulate relative protein concentrations in several dif-
ferent living systems, including Schixosaccharomyces pombe to validate
the results. Then we generalize the model to account for the nonlinear
dynamics of a cell division cycle, and in particular for special events
of cell cycles. We discuss the obtained results and their implications
on designing engineered regulatory genetic networks and new biological
technologies.

1 Introduction

Cells process information in complex ways. During the cell cycle, an eukaryotic
cell duplicates all of its components and separates them into two daughter cells.
This process is composed of four phases: G1 phase in which size of the cell is
increased by producing RVA and synthesizing protein, S phase in which DNA
are replicated, G2 phase in which the cell continues to produce new proteins
and grows in size, and M (mitosis) phase in which DNA are separated and cell
division takes place [1], [3]. From the outset, we are in a situation where we have
to deal with different biological events with different spatial and temporal scales.

The problem of modelling dynamics of genetic networks, including those for
cell cycles, has been actively addressed in the past decades [2]. New improved
models have been recently developed with increasing capability to predict com-
petitively experimental results [3]. The Novak-Tyson model for a cell cycle in [3]
contains over 40 parameters that are of the same units but vary from less than
10−2 to 35. A stochastic generalization of that model was presented in [4].

In the present work, we start our analysis from the Novak-Tyson model and
apply this deterministic model to simulate relative protein concentrations in
several different living systems. Then, we generalize the model to account for
the nonlinear dynamics of a cell division cycle, and in particular for special

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 134–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Modelling Dynamics of Genetic Networks as a Multiscale Process 135

events of cell cycles. We show that the effects of such fluctuations may have
important implications on designing engineered regulatory genetic networks due
to the sensitivity of the model to parametrization processes.

2 Mathematical Models of Cell Cycles

Based on the original Novak-Tyson model, in this section, we develop a new
model that accounts for fluctuations of concentrations in response to the multi-
scale character of cellular activities.

2.1 The Novak-Tyson Model

With x1(t) = Cdc13T (t), x2(t) = preMPF (t), x3(t) = Ste9(t), x4(t) = Slp1T (t),
x5(t) = Slp1(t), x6(t) = IEP (t), x7(t) = Rum1T (t), x8(t) = SK(t) and
MPF (t) denoting the relative concentrations of the corresponding proteins, and
x9(t) = M(t) the mass of the cell in the cell cycle, the equations and parameters
in the Novak-Tyson model are given in Table 1 where the time t for variables
xi, i = 1, 2, . . . , 9; MPF , TF , Trimer and Σ is dropped.

Table 1. The Novak-Tyson Model. All constants have units min−1, except the J ’s and

Kdiss which are dimensionless

d
dt

x1 = k1x9 − (k′
2 + k′′

2 x3 + k′′′
2 x5)x1 (1) k1 = k′

2 = 0.03, k′′
2 = 1.0, k′′′

2 = 0.1;
d
dt

x2 = kwee(x1 − x2) − k25x2 k′
3 = 1.0, k′′

3 = 10.0, J3 = 0.01,
−(k′

2 + k′′
2 x3 + k′′′

2 x5)x2 (2) k′
4 = 2.0, k4 = 35.0, J4 = 0.01;

d
dt

x3 = (k′
3 + k′′

3 x5)
1−x3

J3+1−x3
k′
5 = 0.005, k′′

5 = 0.3, J5 = 0.3,

−(k′
4x8 + k4MPF ) x3

J4+x3
(3) k6 = 0.1, k7 = 1.0, k8 = 0.25,

d
dt

x4 = k′
5 + k′′

5
MPF4

J4
5+MPF4 − k6x4 (4) J7 = J8 = 0.001; k9 = 0.1, k10 = 0.04,

d
dt

x5 = k7x6
x4−x5

J7+x4+x5
− k8

x5
J8+x5

− k6x5 (5) J9 = J10 = 0.01; k11 = 0.1, k12 = 0.01,
d
dt

x6 = k9MPF 1−x6
J9+1−x6

− k10
x6

J10+x6
(6) k′

12 = 1, k′′
12 = 3, Kdiss = 0.001;

d
dt

x7 = k11 − (k12 + k′
12x8 + k′′

12MPF )x7 (7) k13 = k14 = 0.1; k15 = 1.5, k′
16 = 1,

d
dt

x8 = k13TF − k14x8 (8) k′′
16 = 2, J15 = J16 = 0.01;

d
dt

x9 = µx9 (9) Vawee = 0.25, Viwee = 1,
Trimer = 2x1x7

Σ+
√

Σ2−4x1x7
(10) Jawee = Jiwee = 0.01;

MPF = (x1−x2)(x1−Trimer)
x1

(11) Va25 = 1, Vi25 = 0.25,

TF = GK(k15x9, k
′
16 + k′′

16MPF, J15, J16) (12) Ja25 = Ji25 = 0.01; k′
wee = 0.15,

kwee = k′
wee + (k′′

wee − k′
wee)GK(Vawee, ViweeMPF, Jawee, Jiwee) (13)

k25 = k′
25 + (k′′

25 − k′
25)GK(Va25MPF, Vi25, Ja25, Ji25) (14)

where Σ = x1 + x7 + Kdiss and k′′
wee = 1.3, k′

25 = 0.05, k′′
25 = 5;

GK(a, b, c, d) = 2ad

b−a+bc+ad+
√

(b−a+bc+ad)2−4ad(b−a)
. µ = 0.005.

2.2 The Generalized Model with Fluctuations

Since a cell cycle involves nonlinear changes of the protein concentrations re-
lated to multiple spatial and temporal scales, the regulation of cellular activities
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contains a degree of uncertainty [3], [4]. Specifically, at the G1 phase, Ste9 and
Rum1 are activated while Slp1 and Cdc13T are reducing rapidly. From the re-
sults of the deterministic model and experimental observations, the magnitudes
of Ste9, Cdc13T and Slp1 are large enough to introduce fluctuations and the
fluctuations of their derivatives are expected. SK is also active at the latter
part of the G1 phase. During the S phase which is shorter than G1 and G2
phases but much longer than M phase, the magnitudes of Cdc13T and preMPF
are large enough to generate fluctuations of their changing rates. During the
G2 phase, the magnitudes of Cdc13T and preMPF continue to increase. In
the M phase, the magnitudes of Cdc13T , preMPF and slp1 changes rapidly
and are large enough to introduce fluctuations. IEP is also active in the M
phase.

If the magnitude of the relative concentration of a protein xi(t) is beyond
certain value (we use 0.3 for such a value in this paper), we need to modify the
right hand sides (RHSs) of equations (1)–(9). Based on the experimental results
(see Fig. 1) and taking into account that the period of the cell cycle is about
T = 138.63 minutes [3], we suggest to multiply the RHSs of equations (1)–(9)
by the functions f1(t), f2(t), . . ., f9(t) respectively, where

fj(t) =
{

1 + r, kT ≤ t ≤ kT + αj or kT + βj ≤ t ≤ (k + 1)T ;
1.0, otherwise, , j = 1, 5; (15)

f�(t) =
{

1 + r, kT + γ� ≤ t ≤ kT + λ�;
1.0, otherwise, , � = 2, 3, 6, 8; (16)

f4(t) = f7(t) = 1.0; f9(t) = 1 + r, (17)

k is a nonnegative integer, r is a control parameter that provides us with the
amplitude of fluctuations, α1 = 3, β1 = 20, α5 = 15, β5 = T − 5, γ2 = 10,
λ2 = T , γ3 = 0, λ3 = 20, γ6 = T − 10, λ6 = T , γ8 = 10 and λ8 = 20. Note that
the choice of fi(t) for i = 1, . . . , 9 is not unique, but the above choice for r = 0
is consistent with experimentally confirmed results of [3].

3 Computational Experiments

Both models, described in the previous section, have been implemented in MAT-
LAB. We applied stiff solvers to deal efficiently with numerical difficulties caused
by variability of model parameters. The initial conditions in all experiments are
x(0) = (0.45, 0, 1.0, 0, 2.1, 0, 0.05, 0, 1.0). In our first set of experiments, we use
the deterministic Novak-Tyson model. The results with this model are presented
in Fig. 1. Here and in all figures that follow we present two cycles. We observe
that the relative concentrations of proteins are qualitatively the same as those
obtained in [3], given differences of initial conditions. Replacing k′′

wee (parameters
k′′

wee and k′′
25 are responsible for rate of tyr-phosphorylation and dephosphoryla-

tion) by 0.3 in the above model as suggested in [3], we get a model for the cell
cycle of Wee1− mutants. The results obtained in this case are presented in Fig.
2. We can see that the relative concentrations of Cdc13T , MPF and preMPF
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Fig. 1. Numerical simulation of the model in Section 2.1

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(min)

Cdc13
T

Rum1
T

Ste9

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(min)

MPF

preMPF

Fig. 2. Numerical simulation of the model with k′′
wee = 0.3

0 100 200 300
0

0.5

1

1.5

time(min)

Cdc13
T

Rum1
T

Ste9

0 100 200 300
0

0.5

1

1.5

time(min)

MPF

preMPF

Fig. 3. Numerical simulation of the generalized model with r = 0.05

in Fig. 2 are quite different from those in Fig. 1. We have also analyzed the
situations with k′′

wee = 0.3 and k′′
25 = 0.02, as well as with k′′

25 = 0.02, keeping
k′′

wee the same as in our first model. In both cases, noticeable changes in relative
MPF were observed.

In our second set of experiments, we use the generalized model given in
Section 2.2. Setting sequentially r = 0.001, r = 0.005, r = 0.01 and r = 0.05 in
(15)–(17), we obtained cell cycles with reduced cycle times. The results for two
cycles for r = 0.05 are shown in Fig. 3. They demonstrate that it is possible to
regulate the cell cycle by adjusting the perturbation control parameter r.
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4 Conclusions

In this paper, we proposed a new model of cell cycle processes. The model takes
into account special events during the cell cycle. The developed methodology
can also be used to guide investigations on multiscale phenomena in designing
engineered regulatory genetic networks and new biological technologies.
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