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Abstract. In this paper, we propose a second–order parameter–uniform
convergent hybrid scheme for self–adjoint singular perturbation problems
(SPPs) subject to mixed (Robin) type conditions. The cubic spline baesd
difference scheme is combined with the classical central difference scheme
to obtain monotone scheme. Numerical example is provided to support
the theory.
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1 Introduction

Singular perturbation problems (SPPs) arise in several branches of engineering
and applied mathematics which include fluid dynamics, quantum mechanics,
elasticity, chemical reactor theory, gas porous electrodes theory, etc. To solve
these types of problems various methods are proposed in the literature, more
details can be found in the books of Farrell et al. [2], and Roos et al. [6].

We consider the following singularly perturbed self–adjoint boundary–value
problem (BVP):

Lu(x) ≡ −εu′′(x) + b(x)u(x) = f(x), x ∈ D = (0, 1) (1)
α1u(0) − β1u

′(0) = A, α2u(1) + β2u
′(1) = B, (2)

where α1, β1, α2, β2 > 0 and ε > 0 is a small parameter, b and f are suffi-
ciently smooth functions, such that b(x) ≥ β > 0 on D = [0, 1]. Under these
assumptions, the BVP (1-2) possesses a unique solution u(x) ∈ C2(D)∩C1(D).
In general, the solution u(x) may exhibit two boundary layers of exponential
type at both end points x = 0, 1. Boundary-value problems of the type (1-2)
arise in many applications, for instance, confinement of a plasma column by
reaction pressure, theory of gas porous electrodes, performance of catalytic pel-
lets and geophyisical fluid dynamics chemical reactions [1, 5]. In [3], the authors
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have devised HODIE schemes for singularly perturbed convection-diffusion and
reaction-diffusion problems respectively.

For sufficiently small ε , classical methods on uniform meshes only work
for very large number of mesh points. Nevertheless, if these methods are de-
fined on special fitted meshes, the convergence to the exact solution is uniform
in ε. Shishkin meshes are simple piecewise uniform meshes of this kind, fre-
quently used for singularly perturbed problems. For above mentioned problem,
The Shishkin mesh Ω is constructed as follows. The domain Ω is divided into
three subintervals as Ω = [0, σ] ∪ [σ, 1 − σ] ∪ [1 − σ, 1] for some σ such that
0 < σ ≤ 1/4. On the subintervals [0, σ], [1 − σ, 1] a uniform mesh with N/4
mesh–intervals is placed, where [σ, 1 − σ] has a uniform mesh with N/2 mesh
intervals. It is obvious that the mesh is uniform when σ = 1/4, and it is fit-
ted to the problem by choosing σ = min

{
1
4 , σ0

√
ε ln N

}
,where σ0 is a constant

will be fixed later. Further, we denote the mesh size in the regions[σ, 1 − σ] as
h(1) = 2(1− 2σ)/N , and in [0, σ], [1− σ, 1] by h(2) = 4σ/N . Here, we propose an
hybrid scheme which is a mixture of the cubic spline scheme with the classical
central difference scheme for the BVP (1-2) on above mentioned Shishkin mesh.
We apply the cubic spline difference scheme in the inner region(0, σ)∪ (1−σ, 1),
whereas in the outer region (σ, 1 − σ) we use the classical central difference
scheme. This is mainly because to retain the discrete maximum principle of the
difference scheme. The present method provides second–order uniform conver-
gence throughout the domain of interest. A numerical experiment have been
carried out to show the efficiency of the method.

2 ε-Uniform Hybrid Scheme

The cubic spline based scheme is analyzed for stability and convergence and it is
observed that for the corresponding matrix to be a M-matrix, a very restrictive
condition is needed on the mesh size, specially in the outer region where a coarse
mesh is enough to reflect the behavior of the solution in that region . So, to
overcome this, The following hybrid scheme is proposed in which the well known
classical central difference scheme is taken in the outer region and the cubic
spline scheme in boundary layer region

r−i ui−1 + rc
i ui + r+

i ui+1 = q−i fi−1 + qc
i fi + q+

i fi+1, i = 1, · · · , N − 1, (3)

along with following equations for approximations at boundaries
⎧
⎨

⎩

rc
0u0 + r+

0 u1 = q−0 + qc
0f0 + q+

0 f1,

r−NuN−1 + rc
Nu0 = q−N + qc

NfN−1 + q+
NfN ,

(4)

for i = 1, · · · , N/4 and 3N/4, · · · , N − 1
⎧
⎨

⎩

r−i = −3ε
hi−1(hi+hi−1)

+ hi−1
2(hi+hi−1)

bi−1; rc
i = 3ε

hihi−1
+ bi;

r+
i = −3ε

hi(hi+hi−1)
+ hi

2(hi+hi−1)
bi+1;

(5)
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{
q−i = hi−1

2(hi+hi−1)
; qc

i = 1; q+
i = hi

2(hi+hi−1)
, (6)

and for i = N/4 + 1, · · · , 3N/4 − 1
{

r−i = −2ε
hi−1(hi+hi−1)

; rc
i = 2ε

hihi−1
+ bi; r+

i = −2ε
hi(hi+hi−1)

, (7)

{
q−i = 0; qc

i = 1; q+
i = 0. (8)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rc
0 = − 3ε

h0

(
α1 + β1

h0

)
− b0β1; r+

0 = − 3εβ1
h2
0

+ b1
2 β1;

q−0 = − 3εA
h0

; qc
0 = −β1; q+

0 = −β1
2 ;

r−N = − 3εβ2
h2

N−1
+ bN−1

2 β2; rc
N = − 3ε

hN−1

(
α2 + β2

hN−1

)
− bN

2 β2;

q−N = − 3εB
hN−1

; qc
N = −β2

2 ; q+
N = −β2.

(9)

3 Numerical Experiments

To show the accuracy of the present method, here we have implemented it to
a test problem. The results are presented in the form of tables with maximum
point–wise errors and rate of convergent. Table 1 display the results for the
values ε = 2−4, 2−16, · · · , 2−40 and different values of N .

Table 1. Maximum pointwise errors GN
ε , rates of convergence p and ε - uniform errors

GN corresponding to the Hybrid scheme for Example 1

ε Number of mesh points N

16 32 64 128 256 512 1024

2−4 2.0176e-2 4.9167e-3 1.2214e-3 3.0487e-4 7.6188e-5 1.9045e-5 4.7611e-6
2.0369 2.0092 2.0023 2.0006 2.0001 2.0000

2−16 1.5583e-1 5.6409e-2 1.9283e-2 6.4067e-3 2.0840e-3 6.5813e-4 2.0297e-5
1.4660 1.5486 1.5897 1.6203 1.6629 1.6971

2−24 1.5515e-1 5.6201e-2 1.9217e-2 6.3854e-3 2.0771e-3 6.5597e-4 2.0231e-5
1.4650 1.5482 1.5895 1.6202 1.6629 1.6971

2−32 1.5512e-1 5.6192e-2 1.9214e-2 6.3844e-3 2.0768e-3 6.5588e-4 2.0228e-5
1.4649 1.5482 1.5895 1.6202 1.6629 1.6971

2−36 1.5512e-1 5.6191e-2 1.9214e-2 6.3844e-3 2.0768e-3 6.5587e-4 2.0228e-5
1.4649 1.5482 1.5895 1.6202 1.6629 1.6971

2−40 1.5512e-1 5.6191e-2 1.9214e-2 6.3844e-3 2.0768e-3 6.5587e-4 2.0228e-5
1.4649 1.5482 1.5895 1.6202 1.6629 1.6971

GN 1.6274e-1 5.8585e-2 1.9599e-2 6.5096e-3 2.1171e-3 6.6858e-4 2.0619e-4

puni 1.4740 1.5798 1.5902 1.6205 1.6630 1.6971
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Example 1. [7] Consider the self–adjoint SPP

−εu′′(x) + (1 + x)2u(x) = [4x2 − 14x + 4](1 + x)2, x ∈ (0, 1)
u(0) − u′(0) = 0, u(1) = 0.

We use the following double mesh principle to calculate the maximum point-
wise error and rate of convergence.

Let D
N

ε be a Shishkin mesh with the parameter σ altered slightly to σ =
min

{
1
4 , σ0

√
ε ln(N/2)

}
,. Then, for i = 0, 1, · · · N , the ith point of the mesh D

N

ε

coincides with the (2i) the point of the mesh D
2N

ε . The double mesh difference is
defined as GN

ε = max
xi ∈D

N

ε

|UN (xj)−U2N (xj)|, and GN = maxε GN
ε , where

UN (xj) and U2N (xj) respectively denote the numerical solutions obtained using
N and 2N mesh intervals. Further, we calculate the parameter-robust orders of
convergence as p = log2(

GN
ε

G2N
ε

) and puni = log2(
GN

G2N ) . Here, we took σ0 = 1.
We have tabulated the results in Tables 1 which shows the maximum point–wise
error and the rate of convergence for Example 1.

4 Conclusions

In this paper, We have proposed a hybrid method for the numerical solution
of singularly perturbed reaction–diffusion problems. The underlying idea of the
method combines both the cubic spline and classical central difference scheme.
The method is of second–order convergent. One test example is studied to verify
the efficiency and accuracy of the theoretical error estimates, and they reflect
perfectly the same.
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