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Abstract. Since typical industrial-scale reactors may contain many millions of 
bubbles, the extension of direct free-surface modelling techniques to resolve 
every bubble in the vessel would require far more computational power than 
will be available. A more immediate solution is to couple macro-scale reactor 
models to micro-scale models of individual bubbles and collections of a small 
number of bubbles. In this paper, a micro-scale modelling technique was pre-
sented and tested on the situation of a single rising bubble. The micro-scale 
model was based on the Volume-of-Fluid (VOF) technique combined with a 
dynamic mesh adaptation based on wavelet analysis to ensure a sufficient reso-
lution at the gas-liquid interfaces. The method was based on a multi-block par-
allel scheme with  mesh adaptivity facilitated by wavelet analysis embedded 
into a commercial CFD package CFX. Examples of the performance of the 
scheme for a bubble rising problem are given. 

1   Introduction 

Bubbly systems are used widely in the minerals and process industries to increase 
agitation, supply reactants (e.g. oxygen), or to effect particle separations (as in froth 
flotation). Effective two-fluid (or phase-averaged) modelling techniques have been 
developed to simulate the multi-phase fluid flow, and heat and mass transfer in such 
reactors, and are now widely used to assist vessel design [1,2].  These methods do not 
seek to resolve each bubble, but are based volume-averaged equations in which the 
physics of bubble-fluid interactions is modelled though constitutive terms analogous 
to the Reynolds stresses that appear in the RANS equations for a single phase turbu-
lent flow. This necessarily reduces the accuracy and predictive capability of such 
models, and increases their dependence on empirical data and fitting parameters, 
particularly in cases where bubble-bubble interactions such as coalescence are impor-
tant. However, in practice, it is difficult to develop accurate constitutive relations for 
complex systems valid over wide operating ranges using physical experiments.  

A computationally efficient solution to improving the macro-scale multi-fluid models 
is to couple them to micro-scale models of individual bubbles and collections of a small 
number of bubbles. The strategy is to determine improved closure relationships for the 
multi-fluid model through the analysis of the micro-scale models. Where phenomena 
occur at widely differing scales, the numerical analysis may be employed to analyse 
some particular processes at fine scales, for instance, the breakup of a single bubble, 
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coalescence of two or more bubbles, or bubble-particle interactions. The information 
obtained at fine scales can be applied in macroscale CFD or other models. 

This approach has advantages over the experimental determination of constitutive 
relationships because physical information on the processes, e.g. shear rate depend-
ency of the viscosity or stress field, can be obtained locally and analysed in detail. 
The numerical simulations used in this way may be called numerical experiments [3], 
though they should be viewed as the complementary to physical experiments, rather 
than a substitute. 

The fine scale simulations differ from traditional macroscale CFD simulations used 
in reactor design in that more attention is paid to local information and a very fine 
mesh must be used to resolve full detail of interactions between the flow and the 
phase boundaries. If fixed meshes are employed in a traditional CFD simulation for 
solving practical engineering problems, the full representations of fine scale phenom-
ena are difficult or even impossible for the foreseeable future because of the over-
whelming computational costs [4]. Therefore an alternative approach that is more 
efficient must be developed. 

Micro-scale modellings (or numerical experiments) for multiphase problems gen-
erally involve moving interfaces between immiscible fluids. The accurate simulation 
of fluid flows with sharp fronts presents a problem with considerable difficulties [5]. 
Many types of interface tracking methods have been developed, but they generally 
fall into two categories. In the first type, a deformable finite volume or finite element 
mesh is used such that a particular mesh boundary moves so that it always coincides 
with the interface [6]. The other strategy is to keep the mesh fixed and use a separate 
procedure to describe the position of the interface. These methods are reviewed in [7]. 
The interface can be represented on a fixed grid in a variety of ways, either explicitly 
or implicitly. The Volume of Fluid method (VOF) is one of the most popular implicit 
interface tracking schemes [5]. Physical problems which are considered in practice 
require three-dimensional calculations with surface tension, non-catastrophic break-
age and reconnection of the interface. The VOF technique naturally allows for the 
latter, and has been modified by various workers to include surface tension. 

Commercial software packages such as CFX and FLUENT are usually employed 
to model practical multiphase flows due to the complexities of the phenomena and the 
geometries. Although mesh adaptation has been provided by the commercial CFD 
packages, they generally do not allow for dynamic mesh adaptation [8]. If a mesh 
sufficiently fine to resolve detail near the interface is applied on the whole geometry, 
the computational requirements can be huge. Such a fine mesh is not necessary on 
most of the geometry, but because of the movement of the interface, the localized 
mesh refinement requires a dynamic mesh adaptation.  

The largest difficulty with adaptive methods is to determine the mobility of grids. 
Adaptive wavelet methods have been developed to solve Navier-Stokes equation at 
high Reynolds numbers [9]. Wavelets have the ability to accurately and efficiently 
represent strongly inhomogeneous piecewise continuous functions [10]. Using such 
techniques, the numerical resolution can be naturally adapted to intermittent the struc-
tures of flows at fine scales with significant decrease of computational efforts and 
memory requirements. However, efforts have been mainly made around using wave-
lets as an orthogonal and complete basis, spanning a space in which to seek approxi-
mate solutions satisfying the equation in a Galerkin or collocation sense [4, 9]. To 
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apply such methods however would require the development of a new program for 
each particular flow-related problem, whereas general-purpose commercial CFD 
packages are preferred. 

Hestheven and Jameson [4] developed a different approach to utilise the unique 
properties of wavelets, and this approach can be applied in a grid-based method util-
ized by CFD packages. In this method, wavelets were employed to detect the exis-
tence of high frequency information and supplied spatial locations of strongly inho-
mogeneous regions. Very fine grids were used only in these regions. In this method, 
wavelets were used for grid generation and order selection only, whilst the scheme for 
solving the partial differential equation was based on conventional finite differ-
ence/element schemes, albeit defined on variable grids. The method provides a possi-
bility to embed the wavelet-based grid generation into current commercial CFD pack-
ages to reduce computational costs by using adaptive meshes. 

In this paper, a multi-block (domain) parallel scheme with the adaptivity facilitated 
by wavelet analysis was proposed and embedded into commercial CFD package CFX 
to track moving free surfaces efficiently.  

2   Wavelet Analysis and Wavelet-Based Grid Adaptation 

Wavelet analysis is an emerging field of applied mathematics that provides tools and 
algorithms suited to the type of problems encountered in multiphase process simula-
tions. It allows one to represent a function in terms of a set of base functions, called 
wavelets. 

Wavelet transform involves representing general functions in terms of simple, 
fixed building blocks at different scales and positions. These building blocks, which 
are actually a family of wavelets, are generated from a single fixed function called the 
“mother wavelet” by translation and dilation (scaling) operations. In contrast to the 
traditional trigonometric basis functions which have an infinite support, wavelets have 
a compact support. Therefore wavelets are able to approximate a function without 
cancellation. In the basic work of Daubechies [10], a family of compactly supported 
orthonormal wavelets is constructed. Each wavelet number is governed by a set of L  
(an even integer) coefficients { }1,,1,0: −= Lkpk !  through the two-scale relation: 
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where functions )(xφ  and )(xψ  are called scaling function and wavelet, respectively. 

The fundamental support of the scaling function )(xφ  is in the interval [ ]1,0 −L  

while that of the corresponding wavelet )(xψ  is in the interval [ ]2/,2/1 LL− . The 
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coefficients kp  appearing in the two-scale relation (1) are called wavelet filter coeffi-

cients. All wavelet properties are specified through these coefficients. For more de-
tails see Daubechies’ paper [10]. 

Interpolating functions are generated by the autocorrelation of the usual compactly 
supported Daubechies scaling functions [11]. Such an autocorrelation function )(⋅θ  

verifies trivially the equality nn 0)( δθ = , and generates a multi-resolution analysis. 

The approximate solution of the problem )(⋅ju  defined on interval [0, 1] is written in 

terms of its values in the dyadic points: 

∑ −= −

n

jj
jj nxnuxu )2()2()( θ     (3) 

and such a function is exact at the dyadic points. 
Consider the function: 
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Denote jV  the linear span of the set { }Zkkxj ∈− ),2(θ . It can be proven that 

jV  forms a multi-resolution analysis where )(⋅θ  plays the role of a scaling function 

(nonorthonormal). In this paper, a modified interpolating function was constructed in 
order to achieve an interpolating operator on the interval with the same accuracy as 
the counterpart on the line. Such functions were introduced by Bertoluzza and Nald 
[11].  
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The sparse point representation (SPR) and the grid generation technique based on 
Holmstorm’s work [12] were employed for grid adaptation. The SPR was based on 
interpolating wavelet transform (IWT) on dyadic grids. A feature of the basis is the 
one-to-one correspondence between point values and wavelet coefficients. The inter-
polating subdivision scheme recursively generated the function values on a fine grid 
from the given values on a coarse grid. At each level, for odd-numbered grid points, 
the differences between the known function values and the function values predicted 
by the interpolation from the coarser grid were calculated. These differences were 

termed as wavelet coefficients j
kd , which gave the information about the irregularity 
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3   Problem Definition and Method Formulation 

Wavelet-based adaptive methods have been successfully applied to solve many prob-
lems [13, 9]. The grids were adapted based on the change of the solutions. Fine 
meshes were assigned only on the regions where the solutions changed sharply. How-
ever, for current CFD commercial packages, e.g. CFX, there is a restriction to the 
dynamic mesh adaptation: the topology of the mesh must remain fixed. Therefore, the 
advantages of wavelet-based grid adaptation cannot be fully utilised at this stage. A 
modified wavelet-based mesh adaptation methodology was proposed in this section. 

Wavelet-based grid generation supposes a calculation which begins with evenly 
spaced samples of a function. It has usually been applied to simple geometries and 
structured grids [11]. To combine wavelet analysis with CFX commercial CFD pack-
age, a multi-block (domain) formulation was proposed. A moving cubic subdomain or 
block with fine mesh was designed to track the free surface and combined the geo-
metric flexibility and computational efficiency of a multi-block (domain) scheme with 
the wavelet-based mesh adaptivity. The moving block was like a “microscope” - it 
was used to track local information required. Coarse mesh was employed outside the 
moving block (subdomain). Therefore the scheme was computationally efficient 
without loss of accuracy. 

To clearly describe the scheme, a simple case, a single rising bubble, was consid-
ered. Two algorithms were proposed as follows: wavelet-based adaptive structured 
grid using junction box routines; wavelet-based adaptive unstructured grid using CFX 
expression language and junction box routines 

3.1   Problem Definition 

A numerical experiment was designed by Krishna and Baten [14] to simulate the 
single bubble rising process using CFX 4. A 2D rectangular column (25mm × 90mm) 
involving 144000 grid cells was used. It took about two weeks using six R8000 proc-
essors for a simulation run. 

In this paper, the same configuration was modelled using CFX 5.7. The only dif-
ference was that a wavelet-based mesh adaptation algorithm was embedded into the 
CFX package so that a moving fine-mesh block was used to track the bubbles. This 
technique used only 10% of the number of grid cells that would be required for a 
uniform mesh to obtain similar accuracy.  

The simulation was carried out in a rectangular column using 2D Cartesian co-
ordinate grid. No-slip wall boundary condition was imposed, and the column was 
modelled as an open system. The VOF model was employed to describe transient 
motion of the gas and liquid phases using the Navier-Stokes equations. Surface ten-
sion was included. For the convective terms, high resolution differencing was used. 
First order backward Euler differencing was used for time integration. The time step 
used in the simulation was 0.00003s or smaller. 

3.2   Wavelet-Based Adaptive Structured Grid Using Junction Box Routines 

CFX-MESHBUILD was used to generate the initial structured mesh consisting of five 
blocks. To utilise wavelet analysis, the proposed moving fine-mesh block must be 
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either a cube or a rectangle. The initial size and position of the block depends on those 
of the bubble at initial time, see Table 1. Therefore the proposed mesh adaptation 
method can be applied in a complex geometry. The mesh distribution of block B1 was 
chosen as uniform grid (27+1) × (26+1) to apply wavelet analysis. Because the bubble 
extended in x-direction significantly during the process, higher resolution was used in 
this direction. The mesh distributions of other blocks can be different. For simplicity, 
the same distributions were given for the shared edges and uniform grids were cho-
sen, see Figure 1 and Table 2. 

Table 1. Initial bubble/block size and position 

Initial Bubble (Diameter) / Block Initial Bubble / Block Positions (Centre) 
4mm / (6mm×6mm) (12mm, 4mm) / (12mm, 4mm) 

8mm / (10mm×10mm) (12.mm, 6mm) / (12mm, 6mm) 

 

 

B1 

B2 

B3 

B4 

B5 

    

 

 

Fig. 1. Geometry and blocks of the bubble rising   Fig. 2. Snapshots of typical rising trajectorie 
column                                                                     of bubbles of 4 and 8 mm diameter and B1 

Table 2. Distributions of blocks 

 Distribution of B1 Distributions of B2 and 
B4 

Distributions of B3 and 
B5 

Ratio of adap-
tive mesh to full 
mesh 

4mm bubble (27+1)× (26+1) 27× 25 26× 25 0.08 
8mm bubble (27+1)× (26+1) 27× 25 26× 25 0.08 

Using CFX 5.7, the volume fractions on the vertices of each cell can be obtained. 
Due to the limitation of CFX solver, the topology of the mesh must remain fixed. 
Points cannot be added to or removed from the grid. Only the position of free inter-
face was detected using IWT and wavelet coefficients. At each mesh adaptation time 
step, the minimum distances between the interface and the boundaries of block B1 
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was calculated to decide if the position and size of B1 should be changed and a new 
grid was generated. The algorithm is as follows: 

Step 1. Calculate the wavelet coefficients of volume fraction of gas in x-direction 
from the top and bottom rows of B1 to determine the nearest position between the 
interface and the top or bottom boundaries of B1. The IWT and wavelet coefficients 
are calculated from level 6 to level 7 on each row. If most of the wavelet coefficients 
on one row are larger than the threshold ε , e.g. 80% of the total number on one row, 
this means the interface is on or near the position.  

Step 2. Calculate the wavelet coefficients of volume fraction of gas in y-direction 
from the left and right columns of B1 to determine the nearest position between the 
interface and the left or right boundaries of B1 using the same method in Step 1. 

Step3. If all the distances between the interface and the boundaries of B1 are larger 
than given minimum distance pd , the mesh remains fixed; Otherwise, move the 

boundaries of B1 to the positions until the distances between the interface and the 
boundaries are not less than pd . 

Step 4. Set limits to the position of block B1 to avoid mesh folding. There should 
be a given minimum distance between B1 and the boundaries of the column. 

Step 5. Generate a new uniform mesh based on the new position of B1 for each 
block using the same distribution as that of the initial mesh and pass the new grid to 
CFX. 

The block B1 was moved based on the wavelet analysis of the volume fraction 
function of gas. Therefore, the bubble was always in B1. There is a correlation be-
tween the frequency of the grid adaptation and the tolerance distance between the 
interfaces and the boundaries of B1 when the adaptation is performed. If the grid 
adaptation is not done often enough, a larger tolerance distance must be given so that 
the front does not move out of B1 between the adaptations. Conversely, more frequent 
adaptations demand a small distance. 

It is natural to define the parallel computation partitions based on five blocks. In 
this work, three partitions were defined, partition 1 including B1, partition 2 including 
B2 and B3, partition 3 including B3 and B4. Partition 1 was calculated on master 
machine. The whole grid was determined based on partition1 and passed to slave 
machines. 

In practice, unstructured grids are often used in complex geometries. The proposed 
method can also be applied to unstructured grids using CFX expression language and 
junction box routines together. The method has been used for the same simulation as 
described above. 

4   Simulation Results  

The simulations were run on a Linux system. Snapshots of typical bubble trajectories 
are shown in Fig 2. They were similar to the results of Krishna and Baten [13]. Figure 
2 clearly showed how the fine mesh moves with the bubble. It confirmed the ability to 
use the wavelet analysis within a multi-block framework to achieve considerable 
savings in computing time without loss of accuracy. The number of grid cells was 
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reduced by 90%. The CPU time of the adaptive mesh method was only 1/8 that of the 
method using the fully fine mesh.  

5   Conclusions 

A wavelet-based adaptive mesh scheme was embedded into a commercial CFX pack-
age to track moving free surfaces. It significantly saves computational cost and mem-
ory requirements. The scheme was demonstrated in a single bubble rising simulation. 
A moving “microscope” was designed to reveal details of local information with a 
realistic computing time. The scheme provides the possibility to design some numeri-
cal experiments to analyse processes at a fine scale and utilise the local information 
obtained in macroscale models. Further work to apply the method in such a scheme is 
underway. 
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