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Abstract. Our problem is about a routing of a vehicle with product pickup and 
delivery and with time window constraints. This problem requires to be at-
tended with instances of medium scale )100nodes( ≥ . A strong active time 

window exists %)90(≥  with a large factor of amplitude %)75(≥ . This prob-

lem is NP-hard and for such motive the application of an exact method is lim-
ited by the computational time. This paper proposes a specialized genetic algo-
rithm. We report good solutions in computational times below 5 minutes. 
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1   Problem Definition and Bibliographical Review 

The objective is to determine the optimal route for a distribution vehicle. The vehicle 
departs from a distribution center and returns to the same point at the end of the route. 
An optimal route is defined as that which visits all the clients in such a way that we 
incur a minimal cost. We define a cost matrix which identifies the time or distance 
required to go from each client to all others. The problem constraints are as follows. 

a. Each client visited has a requirement of product to be delivered and a load to be 
collected. We have to observe a finite load capacity for the vehicle all the time.  

b. The time window identified for each client is defined by an opening hour and a 
closing hour. The time window width is equal to the difference between the 
closing hour and the opening hour. The visit to each client must be within the 
time window. It is not permitted to arrive before the opening hour nor after the 
closing hour. 

Our bibliographical summary of previous investigations include Applegate et al. 
1998 [1]; Dumas & Solomon 1995 [2]; Eijl Van 1995 [3]. The outlined problem is 
combinatoric in nature and is catalogued as NP-Hard, Tsitsiklis 1992 [4]. Regarding 
routing application area, the less investigated variant is the one which has to do 
with the physical product distribution, Mitrovic 1998 [5]. The instances that have 
been typically tested are characterized by time windows with a low percentage of 
overlapping, Ascheuer et al. 2001 [6]. The computational complexity for the solu-
tion of the SPDP-TW depends strongly on the structure of the time windows that 
are defined for each customer. The experimental results obtained by Ascheuer et al. 
proved that the TSP-TW is particularly difficult to be solved for instances with 
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more than 50% of active nodes with time window constraints. Ascheuer, Jünger & 
Reinelt 2000 [7] worked with instances up to 233 nodes. They reported 5.95 min-
utes of computational time for an instance of 69 nodes. All the greater instances 
required more than 5 hours of computational time. They conclude that the instances 
on the limit up to 70 nodes can be solved to optimality by exact methods like the 
Branch & Cut algorithms (B&C).     

2   Methodology Proposed 

Our methodology proposes 6 routines. We have 4 preprocessing routines, the Genetic 
Algorithm and finally one another routine for post-processing. We expose the 6 
phases: 

1. Network topology decomposition phase based on a “shortest path algorithm 
(SPP)”. We consider here the topology corners (street corners) that are required to model 
the traffic constraints that we have to observe in order to arrive to each customer in the net-
work. This pre-processing strategy contributes to reduce the computational complexity 
during all the subsequent phases. In order to simplify our formulation we define an empiri-
cal assumption. We are going to use a constant “4” as the quantity of network arcs (north, 
south, east & west) that we require to model a typical city street corner. With the previous 
assumption we can establish that, if we setup a network with N1 nodes, we would obtain 
only N2 nodes, where N1 ≈  4N2. We use an SPP algorithm to pre-calculate the optimal 
sub-tour required to move from each customer to each one of the rest. All these preproc-
essed sub-tours fill the N2 cost matrix to be used in the next phases. 

2. Compressing & clustering phase through a “neighborhood heuristic”. The N2 
nodes are grouped to setup a reduced quantity of N3 meta-nodes (where: N3 < N2).  Our 
assumption here is that we have driving times near to zero between the nodes that are going 
to be grouped. This assumption is going to be considered valid through all the phases where 
we work with the reduced version of the network. Taking in mind this, we can inference 
that the obtained solution for the reduced network can be derived as an optimal for the 
original network as well. The heuristic that we use here to group the nodes is by geographi-
cally neighborhood and also by time windows structure similarity. Starting from a group of 
nodes to be grouped in a meta-node, the time window structure of this meta-node is defined 
by the latest opening time and by the earliest closing time. We use in the algorithm a 50% 
compression factor for the grouping phase which means that N2=2* N3. 

3. Discriminate compressing phase through a "k nearest nodes heuristic”. The 
network arcs with greater cost are eliminated from the matrix. The logic of the previous as-
sumption is because of those arcs have a smaller probability to appear in the optimal solu-
tion. For each N3 node in the network, we maintain only the "k" arcs with the smallest cost, 
where k<<N3.  We use a conservative 20% discriminate factor in order to reduce the prob-
ability that the optimal solution go out from the search space. This empirical assumption 
means that the matrix that will be transferred to the next phase will be reduced and defined 
by N3 x N4, where N4 = 20% * N3 in an “incidence sense”. This means that although the 
dimensionality of the matrix is still the same (N3 x N3), the quantity of non-zero elements 
in the matrix is reduced to an equivalent matrix size of N3 x N4.   

4. Aggressive Branch & Cut phase. the initial math formulation we use here is quite 
similar as we may found in a basic TSP problem [6]. We have that Xij formulation means 
the existence of an arc from “i” to “j” in the route. The procedure to add sub-tour elimina-
tion constraints are also included on this phase. Starting with N3 meta-nodes, the objective 
is to find as quickly as possible, the first feasible solution that cover the time window and 
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vehicle capacity constraints. The logic that we apply here is to iteratively generate cuts 
within a Branch & Cut scheme. For that purpose we identify in the incumbent solution, the 
node with the greater deviation in relation to the time window and/or the vehicle capacity 
constraint. This node is named “pivot node”. Then we verify the nodes of the tour that can 
be identified as "related" in order to re-sequence the position of the pivot node within the 
tour. This relation of the pivot node is exploded in the generation of the cut. The logic that 
we apply here to generate the cut assures that the pivot node "k" use at least one of the arcs 
that connect it to one of the related nodes "j". This procedure continues until is found the 
first feasible solution. At this stage we use Xpress Ver 15.10 © 
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5. Evolutionary phase. our objective here is to approximate the optimal solution for the 

compact version of the network. Maintain in the pool of constraints a cut unnecessarily, 
means to take out the optimal solution or at least a better solution, from the search space. 
Our computational experience indicates that the quantity of cuts that get to be accumulated 
in the pool is meaningful (15-40 cuts). The goal is to identify which cuts of the pool are 
necessary to be eliminated. The cut elimination procedure can not be seen as an individual 
process for each cut, since the presence and/or the elimination of any cut can commit simul-
taneously the presence and/or the elimination of other(s). Identify which cuts must be 
eliminated, can be seen as a combinatoric sub-problem. We then propose an evolutionary 
strategy to attend this sub-problem. A binary codification permits to represent the elimina-
tion (0) and the presence (1) of a cut in the pool. Our Genetic Algorithm applies a tourna-
ment selection operator with a 50% crossing factor. The reproduction method applied was 
by means of a two random crossing points throughout the chromosome length. The muta-
tion factor is initialized with a 5% value and it is auto-adjusted in each generation depend-
ing on the percentage of individuals in the population with identical genetic material con-
tent. Upon increasing the degeneracy level in the population, is applied an exponential 
growth curve in the mutation factor with 50% as an asymptotic limit. The elitism factor is 
limited to 15% of the population. The fitness function we calculate in this evolutionary 
stage is related with two objectives. The first is the route cost minimization. The second is 
the infeasibility level we calculate in the route as we may delete some cut(s) in the chromo-
some. The infeasibility level is only related with the capacity and time windows constraints 
for the SPDP-TW formulation. Our objective on this stage is to find the subset of cuts that 
can be deleted from the pool and at the same time we obtain a feasible solution. The final 
solution at this stage is when we found a minimal cost route which is still feasible as well. 
We remark here that our methodology is different from the conventional approach in the 
evolutionary bibliography. Our review indicates that most of the evolutionary approaches to 
attend routing problems take in mind the genes as the nodes or sequence nodes in the route. 
We treat with a modified problem. The genes represent the presence or elimination of a cut 
in the math formulation of the problem that is actually modeling the route. 

6. Uncompressing phase to generate a route for the original network. The post-
processing phase has the objective of translating the solution obtained in the compact ver-
sion of the network to one another that will be topology sense equivalent to the original 
network. We have here 2 routines. The first routine is focused in determining the optimal 
sequence on which the N3 meta-nodes should be disaggregated to return to the N2 nodes 
obtained in phase 2. Starting from a selected meta-node, we construct only the valid arcs to 
the previous and to the next meta-node. This procedure is propagated to the rest of the 
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meta-nodes in the network. The second conversion routine makes use of the topology in-
formation generated in the first phase of our general methodology. Its objective is to substi-
tute the sequence of the tour defined by the N2 nodes according to the cardinal movements 
that are required to obtain the N1 nodes that are present on the original network.  

3   Experimental Development and Results 

We applied an “Experimental Design” through the use of 4 experimental instruments: 
(1) B&C Algorithm (Xpress© Ver 15.10); (2) Steady Sate Genetic Algorithm (Ev-
olver© Ver 6.0); (3) Generational Genetic Algorithm (Solver© Ver 4.0); (4) Proposed 
Genetic Algorithm. We will calculate a “percentage of optimality” for the statistic test 
of the hypothesis.  

 limit hours5   withinC&B                                   
by  reached solution Best  Bound Lowerwhere 
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We gave treatment to instances with more than 70% of active time windows and 

with a minimal width of 75%. The dimension of the tested instances are defined by w, 
where (100 ≤  w ≤  120). The genetic parameters applied for the implementation of 
each GA's # 1, 2 & 3 were adapted empirically and separately to different values ac-
cordingly to the best case scenario. That means that the parameters were tuned for 
each GA. The experimental design was applied for a sample of 40 instances. All these 
instances were randomly generated. Only the B&C instrument was limited up to 5 
hours of computational time. We remark here that although 5 hours of computational 
time is not evidence of optimality, we can report that we obtain the optimal solution in 
38 of 40 instances. For the previous described GA instruments, the "% of optimality" 
was applied in 4 successive moments of time (minute #3, #5, #8 and #10).  We define 
the following statistic parameters: (1) Mean (m) & (2) Standard deviation (s). The T 
Student test “P(x> 90%)” applied for each element (mij, sij) calculates the probability 
that the algorithmic instrument "j" in the time interval "i" obtains at least a 90% of 
optimality. Table 1 shows the values calculated for the “T” statistic. Table 2 shows the 
probability coefficients “P” Value. 

                 Table 1. “T” Statistic Values                       Table 2. Probability "P Values" 

P(x>90%) P(x>92.5%) P(x>95%) P(x>90%) P(x>92.5%) P(x>95%)

3th Minute NA -0.404 -0.558 2.426 1.069 -0.091 NA 34% 29% 99% 85% 46%

5th Minute -2.426 -0.116 -0.307 3.313 1.539 0.111 <1% 45% 38% 100% 93% 54%

8th Minute -1.280 0.162 0.317 4.851 4.105 0.830 10% 56% 62% 100% 100% 79%

10th Minute -0.700 0.400 0.903 6.298 5.577 1.328 24% 65% 81% 100% 100% 90%

Algorithmic instruments to be compared
B&C 

Algorithm 
(Control 
Group)

Basic 
Genetic 

Algorithm 
(Evolver)

Basic 
Genetic 

Algorithm 
(Frontline)

Proposed Genetic Algorithm 

Algorithmic instruments to be compared
B&C 

Algorithm 
(Control 
Group)

Basic 
Genetic 

Algorithm 
(Evolver)

Basic 
Genetic 

Algorithm 
(Frontline)

Proposed Genetic Algorithm 

 



928

 

4   Discussion and Conclusions 

Our B&C implementation obtains the optimal solution for 38 of 40 instances that are 
particularly difficult to be solved and where the investigation is focused. In addition 
we tested some “toy” instances with lees than 70 nodes and with less than 60% of 
active time windows. The computational times were very favorable since we report 
times below 3 minutes.  Our proposed GA #3 obtains satisfactory solutions 

%)90( ≥optimality  and in reasonable computational times 5 minutes)t(3 ≤≤ . Both “out 

of the self” GA's (1 & 2), are significantly inferiors since these never surpass 90% of 
optimality before the fifth minute. We conclude:  

1. We can establish that the proposed methodology reaches a percentage of opti-
mality ≥ 90% in a computational time ≥  5 minutes (0.001 significance level).  

2. Table 1 & 2 shows that the proposed GA offers solutions within an acceptable 
optimality range and with computational times that make feasible its implementa-
tion. However, we should establish that our methodology can assure only 54% of 
confidence when is required to reach an optimality ≥ 95% in a computational time 
≥  5 minutes.  
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