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Abstract. This paper proposes a new algorithm and an architecture for it to 
compute the modular multiplication over GF(2m). They are based on the stan-
dard basis representation and use the property of irreducible all one polynomial 
as a modulus. The architecture, named SSM(Semi-Systolic Multiplier) has the 
critical path with 1-DAND+1-DXOR per cell and the latency of m+1. It has a lower 
latency and a smaller hardware complexity than previous architectures. Since 
the proposed architecture has regularity, modularity and concurrency, they are 
suitable for VLSI implementation. 

1   Introduction 

The arithmetic operations in the finite field have several applications in error-
correcting codes, cryptography, digital signal processing, and so on [1]. Information 
processing in such areas usually requires performing multiplication, inverse/division, 
and exponentiation. Among these operations, the modular multiplication is known as 
the basic operation for public key cryptosystems over GF(2m) [2-3].  

Numerous architectures for modular multiplication in GF(2m) have been proposed 
in [2-8] over the standard basis. Wang et al. in [5] proposed two systolic architectures 
with the MSB-first fashion with less control problems as compared to [4]. Jain et al. 
proposed semi-systolic multipliers [6]. Its latency is smaller than those of the other 
standard-basis multipliers. Kim in [7] proposed a bit-level systolic array with a simple 
hardware complexity with the LSB-first modular multiplication. Thus, further research 
for efficient circuit for cryptographic applications is needed. To reduced the system 
complexity, Itoh and Tsujii designed two low-complexity multipliers for the class of 
GF(2m), based on the irreducible AOP (All One Polynomial) and the irreducible 
equally spaced polynomial [8]. Later, Kim in [2] proposed various AOP architectures 
based on LFSR(Linear Feedback Shift Register) architecture.  

This paper proposes a new algorithm and a parallel-in parallel-out semi-systolic ar-
ray architecture to compute the modular multiplication over finite field GF(2m). They 
are based on the standard basis representation and use the property of irreducible AOP 
as a modulus. Let DAND and DXOR be the latency of AND and XOR gate, respectively. 
The architecture has the critical path with 1-DAND+1-DXOR per cell and the latency of 
m+1. It could be used to secure cryptosystem application.   
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2   Semi-systolic Architecture 

GF(2m) is the finite extension field of finite field GF(2) [2]. An arbitrary element A 
over GF(2m) can be represented with {1, α, α2 , ⋅⋅⋅ , αm-1}, which is based on the 
standard basis, i.e., A=Am-1αm-1+Am-2αm-2+⋅⋅⋅+A1α+A0. A polynomial of the form 
f(x)= fm xm+fm-1x

m-1+⋅⋅⋅ + f1 x+ f0 is called an irreducible polynomial if and only if a 
divisor of f(x) is 1 or f(x). Assume that a polynomial of the form f(x)= fm xm+fm-1x

m-

1+⋅⋅⋅ + f1 x+ f0 over GF(2) is called an AOP (All One Polynomial) with degree m if 
fi=1 for i=0,1, ⋅⋅⋅ ,m. It has been shown that an AOP is irreducible if and only if 
m+1 is the prime and 2 is the primitive modulo m+1. Let a set {1, α, α2, ⋅⋅⋅ ,αm-1} be 
generated by α which is a root of AOP f(x) and be the standard basis. In the stan-
dard basis, an element A over GF(2m) is presented by A=Am-1αm-1+Am-2αm-2+⋅⋅⋅ 
+A1α+A0. A set with {1, α, α2, ⋅⋅⋅, αm-1, αm} is called an extended basis of {1, α, α2, 
⋅⋅⋅,αm-1}. In the extended basis, an element a over GF(2m) is represented by a=amαm 

+am-1αm-1+⋅⋅⋅+a1α+a0 with Ai=am+ai (0≤ i ≤m-1). Thus, an element over GF(2m) has 
two different representations. Let F(x)=xm+xm-1+⋅⋅⋅ +x+1 be an irreducible AOP of 
degree m: and let α be a root of F(x). i.e., F(α)=αm+αm-1+⋅⋅⋅ +α+1. Then, we have 
αm=αm-1+⋅⋅⋅ +α+1, αm+1=1.  

The multiplication of elements a and b over GF(24) in the extended basis can be 
performed by ab mod p with p=αm+1+1 which applied the property of AOP as a 
modulus. Let the result of this multiplication, ab mod p, be r=rmαm+rm-1αm-

1+⋅⋅⋅+r1α+r0. The recurrence equation for the MSB first algorithm with the property 
of AOP is as follows: r =ab mod  p={⋅⋅⋅[[abm]α mod p+abm-1]α mod p+⋅⋅⋅+ab1}α 
mod p+ab0. From the equation, a new algorithm to compute ab mod p can be de-
rived as following Algorithm 1.  

[Algorithm 1] Modular Multiplication  
Input            : a=(am,am-1,⋅⋅⋅,a1,a0), b=(bm,bm-1,⋅⋅⋅,b1,b0)  
Output         : r=ab mod p 
Initial value : rm+1=(rm,rm-1, ⋅⋅⋅,r1,r0) =(0,0, ⋅⋅⋅,0,0)  
Step 1             for i=m to 0 
Step 2                    ri=Circular_Left(ri+1)+ abi 

 
where Circular_Left(x) is the 1-bit-left-circular shift of x and ri is used to represent the 
i-th intermediate result for the final result r. In the above algorithm, the modular re-
duction is performed just by using 1-bit-left-circular-shift operation. Specially, all the 
operations in the for loop can be performed bit by bit in parallel.  

Let a, b, and b2 be an elements in GF(24). Then a and b with an extended basis {1, 
α,α2,α3,α4} can be represented as follows: a=a4α4+a3α3+a2α2+a1α+a0, b=b4α4+b3α3 

+b2α2+b1α+b0. 
When p=α5+1 is used as a modular in the extended basis, we have  

r =ab mod p 
=a(b4α4+b3α3+b2α2+b1α+b0) mod p 
={⋅⋅⋅[[ab4]α mod p+ab3]α mod p+⋅⋅⋅+ab1}α mod p+ab0 

= r4α4+r3α3+r2α2+r1α+r0. 
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Fig.1 shows a multiplier named SSM based on Algorithm 1 over GF(24). SSM is 
composed of (m+1)(m+1) basic cells. It is the parallel architecture which ai and bi (0≤ 
i ≤m) are inputted at the same time. The (m+1)-bits of data a are inputted from the top 
row and transmitted to the adjacent cells following each row. But the data bi in each 
row is broadcasted to all cells in the same row at the same time. Let DAND and DXOR be 
the latency of AND and XOR gate, respectively. SSM has a critical path with 1-
DAND+1-DXOR per cell. SSM in Fig. 1 can be generalized for arbitrary m as well as 
m=4. Fig. 2 shows the basic cells for SSM.  
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Fig. 1. SSM over GF(24) 
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Fig. 2. Basic cell of SSM 

3   Comparison and Analysis  

Table 1 shows the comparison between the proposed architecture and pervious two 
architectures.  
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Table 1. Comparisons 

          Properties Jain [6] Kim [2] SSM 
Basic architecture Semi-systolic LFSR Semi-systolic 
Irreducible polynomial Generalized AOP AOP 
Number of cell m2 m+1 (m+1)2 
Cell complexity 2 AND, 2 XOR 

3 latches 
1 AND, 1 XOR 
2 REG, 1 MUX 

1 AND, 1 XOR 
2 latches 

Latency m 2m+1 m+1 
Critical path 1-DAND 

+1-DXOR 
1-DAND+ 

log m(1-DXOR) 
1-DAND 

+1-DXOR 

It is assumed that AND and XOR represent 2-input AND and XOR gates, respec-
tively, and latch for 1-bit latch. Let DAND and DXOR be the latency of AND and XOR 
gate, respectively. As a result, the proposed architecture, SSM, has lower latency and 
smaller complexity than previous architectures in [6] and [2]. 

4   Conclusions  

This paper proposed a new algorithm and a parallel-in parallel-out semi-systolic array 
architecture to compute the modular multiplication over finite field GF(2m). The prop-
erty of irreducible AOP was used as a modulus to get a better hardware and time com-
plexity. Proposed architecture has lower latency and smaller hardware complexity 
than previous architectures as shown in Table 1. Since SSM has regularity, modularity 
and concurrency, they are suitable for VLSI implementation.  
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