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Abstract. We study the electronic properties of quantum dot arrays
formed by 2 to 12 vertically aligned quantum dots numerically. Numeri-
cal schemes in grid points choosing, finite differences, matrix reduction,
and large-scale eigenvalue problem solver are discussed. The schemes al-
low us to compute all the desired energy states and the wave functions
efficiently. Numerical experiment results are presented.
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1 Vertically Aligned Quantum Dot Array Model

Recent advances in fabrication and varied applications of semiconductor quan-
tum dot array (QDA) have attracted intensive studies in theoretical, experi-
mental, and numerical. The energy state spectrum and the corresponding wave
functions of a QDA system is of basic physical interest and is crucial for designing
applications like photoelectric devices.

A main challenge for simulating a three-dimensional QDA is to solve very
large scale eigenvalue problems for only several interior eigenvalues that are of
interest. Aiming at the QDA that disk-shaped co-axial InAs QDs are vertically
aligned and embedded in a cylindrical GaAs matrix (see left part of Figure 1),
we develop efficient numerical schemes overcome the difficulties.

The QDA is modelled by the Schrödinger equation, in the cylindrical coordi-
nate, as
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where h̄ is the reduced Plank constant, λ is the total electron energy, F =
F (r, θ, z) is the wave function, m�(λ) and c� are the electron effective mass and
confinement potential in the �th region. The index � is used to distinguish the
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Fig. 1. Left part: Structure schema of a cylindrical vertically aligned quantum dot

array and the heterostructure matrix. Right part: Ground state energies for various

spacer layer distances d0 and number of quantum dots

region of the QDs (for � = 1) from that of the matrix (for � = 2). The non-
parabolic effective mass approximation [1] is given as
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where P�, g�, and δ� are the momentum, main energy gap, and spin-orbit split-
ting in the �th region, respectively. For Eq. (1), the Ben Daniel-Duke interface
conditions [2] are imposed on the interface of the two different materials as
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where (rI , θI , zI) denotes the position on the interface and the n+ and n− denote
the corresponding outward normal derivatives on the interface. Finally, Dirichlet
boundary conditions are prescribed on the boundary (top, bottom, and wall) of
the matrix.

2 Numerical Schemes

This section discusses the numerical schemes used for solving the three-
dimensional QDA Schrödinger equation (1) to compute the electron energy levels
and the associated wave function in the system.

We first discretize the domain by choosing mesh points. Regular uniform
mesh points are chosen in the azimuthal angle θ coordinate. Non-uniform mesh
points are used in the radial coordinate r and the natural axial coordinate z
with the following two special treatments. First, in the heterojunction area, fine
meshes are used to capture the rapid change of the wave functions. Secondly, a
half of the mesh length is shifted in the radial coordinate to avoid incorporating
the pole condition [3].
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Based on the grid points, Eq. (1) is discretized by the 3D centered seven-point
finite difference method
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where Fi,j,k is the approximated value of wave function F at the grid point
(ri, θj , zk) for � = 1, 2, i = 1, . . . , ρ, j = 1, . . . , µ, and k = 1, . . . , ζ. In the
heterojunctions, two-point finite differences are applied on the interface condi-
tions of the QDs. The numerical boundary values for the matrix in the z- and
r-direction are zeros according to the Dirichlet boundary conditions.

Assembling the finite difference discretizations results in a ρµζ-by-ρµζ 3D
eigenvalue problem. By reordering the unknown vector and using the fast Fourier
transformation to tridiagonalize matrices Tk(λ) (for k = 1, . . . , ζ), we obtain µ
independent ρζ-by-ρζ eigenvalue problems with the form

T̃j(λ)F̃j = D̃j(λ)F̃j , (4)

for j = 1, . . . , µ, where T̃j(λ) and D̃j(λ) are ρζ-by-ρζ matrices. Each of the
eigenvalue problems in the form of (4) is called a 2D eigenvalue problem, since
the grid points of the unknowns in F̃j have the same θ value. By multiplying the
common denominator of (4), we can then form the cubic λ-matrix polynomial

A(λ)F = (λ3A3 + λ2A2 + λA1 + A0)F = 0, (5)

where A0, A1, A2, and A3 are independent to λ. The cubic eigenvalue prob-
lem can then be solved efficiently by (i) the cubic Jacobi–Davidson method to
compute the smallest positive eigenvalue representing the ground state energy,
and (ii) the explicit deflation scheme to estimate the successive smallest positive
eigenvalues (i.e. the excited energy states). See [4,5] for detail.

3 Results and Discussions

In our numerical experiments, we assume that Hdot and Rdot of the QDs are
3 and 7.5 nm, respectively. For the matrix, Rmtx = 37.5 nm and 6 nm matrix
layer are assumed above the top and below the bottom of the QDA. The material
parameters used in the experiments are c1 = 0.0000, g1 = 0.4200, δ1 = 0.4800,
P1 = 0.7730, c2 = 0.7700, g2 = 1.5200, δ2 = 0.3400, and P2 = 0.8071. Numerical
simulation findings are summarized as follows.

The ground state energy of the QDA are affected by the number of QDs and
the spacer layer distances d0. Right top of Figure 1 (a) shows the computed
ground state energies versus the number of QDs. It is clear that more QDs in
the QDA results in lower ground state energy for a fixed d0. Furthermore, for a
fixed number of QDs, smaller spacer layer distances lead to lower ground state
energies. Right bottom part of Figure 1 shows the differences (in logarithm)
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Fig. 2. Wave functions corresponding to the ground state energy. The quantum dot

array contains six quantum dots and d0 = 0, 0.5, 2, 6 nm, respectively

of the energies for the QDAs containing n and n + 1 QDs for n = 1, · · · , 11.
For various d0 = 1, 2, 3 nm, the ground state energies decrease exponentially
in a similar manner. To be specific, the energy differences can be nicely fitted
by the linearly least-squares lines with slope −0.407. Figure 2 demonstrates
wave functions corresponding to the ground state energy for QDA formed by
six quantum dots and d0 = 0, 0.5, 2, 6 nm. The results suggest how the wave
functions change as the d0 is decreased.
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