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Abstract. This paper presents two very efficient sorting algorithms. MSL is an 
O(N*B) in-place radix sorting algorithm, where N is the input size and B is the 
keys length in bits. This paper presents an implementation of MSL that is sub-
linear in practice, for uniform data, on Pentium 4 machines. We also present an 
O(N*logN) hybrid quicksort that has a non-quadratic worst case.  

1   Introduction 

Right to left LSD and left to right MSD are O(N*B) radix sorting algorithms. N is the 
input size and B is the length of keys in bits. LSD and MSD use an extra space of size 
N. ALR [4] and MSL [1] process bits left to right, however unlike MSD, ALR and 
MSL are in-place and cache friendly. MSD, ALR and MSL execute recursively, for 
every partition. LSD body code is executed only B/D times, where B is the length of 
keys in bits and D is the used digit size. This makes the design of algorithms faster 
than LSD quite difficult. LSD is faster than MSD in [6]. We present a sub-linear run 
time MSL implementation suitable for sorting 31 bits and 63 bits integers in Java in 
this paper. MSL implementation in Section 2 uses small digit sizes increasing data 
cache friendliness. MSL loops were implemented reducing the number of 
instructions, and therefore increasing instruction cache friendliness. In addition, 
section 3 presents a non-quadratic implementation of quicksort, called switch sort. 
Hybridizing switch sort and MSL does not improve over MSL. Section 4 presents the 
test results. Section 5 gives the conclusions and future work. 

2   MSL and Smaller Digit Sizes 

MSL and ALR use a permutation loop in order to avoid reserving an extra array of 
size N, which is performed in MSD. The main steps of MSL are presented in [1]. 
MSL permutation loop, shuffles keys into their target groups. In the circular list of 
keys, K = <K1, K2, .. , KL>, assume the Target Address (KJ) = Array Location (KJ+1), 
where J is not equal to L, and Target Address (KL) = Array Location (K1). Digit 
extraction and group end address lookup are used in computing a key’s target address. 
MSL permutation loop moves keys in a circular list K to their target addresses. K1 is 
named the initial key in K, and is computed prior to the permutation loop. 
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Many permutation loops are required in order to shuffle all keys in a group to their 
target addresses. ALR searches for K1 sequentially, and preserves the property that all 
keys to the left of the current K1 key are in their correct target addresses. MSL 
searches groups’ information sequentially for the left most group, GLeft, which has at 
least one key possibly not in its target address. MSL uses the top key in GLeft, as K1.  

In [5], sections 4 and 5, digit size 6 was determined as appropriate for radix sorting 
algorithms. This is because of data cache friendliness. The importance of cache 
friendliness in radix sorting algorithms is emphasized in [5] and [4]. MSL also cuts to 
insertion sort for group sizes 20 or less, same as [4].  

3   Switch Sort 

Hybridized quicksort [3] implementation in this paper selects one from many pivot 
computations and is described in this section. Assume that we are interleaving the 
execution of a constant number, K, of divide and conquer algorithms whose worst 
cases are f1, f2 , .. fK. The list of algorithms is denoted AL = (A1, A2, .. AK). When AJ in 
AL performance is degenerate, we interrupt AJ and switch execution to the next 
algorithm in the circular list AL. AL worst case is equal to K * fW provided that the 
following conditions hold. (1) fW = Min (f1, f2 , .. fK). (2) We can determine that the 
current call to AJ is futile in constant time. (3) We can switch execution to the next 
algorithm in the circular list AL without loosing the processing done so far. If each AJ 
in AL executes a futile call, execution returns to AW after circular calls to other 
algorithms in AL. A quicksort example is shown and described next. 

 

SS(int A[], int A_Pivot, int l, int r, int min, int 
max){ 

if ( r – l + 1 <= 10 ) insertionSort (Array, l, r ); 

} else { Step 1: switch (Apply_Pivot) {  

  case 0 : Pivot = max/2 + min/2 ; break;  

  case 1: Pivot = Median_3 (A) ; break; } 

  Step 2: Pos = partition (A, Pivot, l, r) ; 

  Step 3.1:  Compute R%; 

  Step 3.2: if (R < 0.05) A_Pivot = A_Pivot ^1;  // xor 

  Step 4: Quicksort(A, A_Pivot, l, Pos, Pivot, 
max);   

    Quicksort(A, A_Pivot, Pos+1, r,  min, Pivot);   

 }   

}  
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We measure balanced partitioning in quicksort to determine that the current call is 
futile. The partitioning ratio is defined as the size of the smaller partition divided by 
the size of the input group in quicksort. Let P% be the minimum acceptable 
partitioning ration, over all the algorithms in AL, equals 5% in Step 3.2. R% is the 
partitioning ration for the current quicksort call. When R% < P%, Step 3.2, 
partitioning is named degenerate or a failure. AL code above has only quicksort 
implementations, and a switch statement is used to decide which pivot computation to 
use, see Step 1 above. We call the algorithm switch sort (SS). Step 3.2 selects an 
alternative pivot computation for recursive calls. Max-Min average pivot computation 
in the first line in Step 1 is an adaptive implementation of taking the middle value of 
the input range in radix exchange [7]. Median of three quicksort passes down the 
actual lower partition max and the actual upper partition min. Radix exchange always 
divides the input range by half on recursive calls, independent of data. AL worst case 
is O(2 * NlgN), where the worst case of radix exchange is O(2 * NlgN).   

4   Experimental Results 

In Table 1, MSL run time is non-significantly sub-linear in experiments. The test data 
is uniform. The machine used for the displayed results is 3 GHz Pentium 4, 1GB 
RAM, 1MB level 2 cache, and 16 KB level 1 cache, with 400 MHz RAM speed. MSL 
sub-linear run time was confirmed on other Pentium 4 machines. In Table 1, add the 
sizes at columns headings to the sizes at each row to get the array size at a cell. Row 
30M+ (30 millions+) and column +5M refer to the cell for the array size 35 millions.    

In Table 1, MSL running time for array size 35 millions is 4000 milliseconds, and 
for array size 70 millions is 7875 milliseconds, 31 bits integers. In Table 1, the 
running time for array size 25 millions, is 4032 milliseconds, and for array size 50 
millions, is 7735 milliseconds, for 63 bits integers.   

Cutting to insertion sort is an important factor in MSL. On the other hand, we 
could not improve the running time of MSL by hybridizing MSL with switch sort. 
MSL and switch sort are compared against other algorithms in Table 2. 

Table 1. MSL running times in milliseconds. Sizes are multiple of M=106 

31Bits +1M +2M +4M +5M +6M +8M +10M 
N=0+ 93 188 437 657 890 1234 1469 
N=10M+ 1563 1671 1875 1984 2094 2266 2500 
N=20M+ 2578 2678 2891 2984 3078 3281 3484 
N=30M+ 3594 3703 3906 4000 4125 4344 4547 
N=40M+ 4671 4766 5000 5079 5218 5390 5625 
N=50M+ 5782 5875 6062 6172 6313 6532 6734 
N=60M+ 6890 6953 7172 7313 7453 7656 7875 
63Bits +1M +2M +4M +5M +6M +8M +10M 
N=0+ 141 250 594 843 1125 1531 1859 
N=10M+ 2016 2157 2485 2594 2765 3016 3281 
N=20M+ 3469 3578 3859 4032 4141 4438 4735 
N=30M+ 4860 5016 5328 5469 5625 5891 6203 
N=40M+ 6375 6500 6797 6953 7125 7406 7735 
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LSD, digit size 8 (LSD8) is faster than LSD with digit size 16, LSD16, and other 
digit sizes, on the test machine. LSD processes the total keys bits. MSL processes 
only the distinguishing prefixes, but is recursive (section 1). In Table 2, MSL has half 
the run time of LSD8 for 63 bits data. In addition, MSL is better than LSD8 for larger 
31 bits arrays. See size 16 and 32 millions as well as MSL sub-linear run time in 
Table 1. Switch sort (SS), is faster than LSD16, 63 bits longs data. Switch sort is also 
faster than the two algorithms, which Switch sort alternates, quicksort and Max-Min 
Average (MMA). Java built in tuned quicksort (JS), which is a tuned implementation 
of [2], is used in Table 2, instead of our own slower median of three quicksort. 

Table 2. MSL running times in milliseconds. Sizes are multiple of M=106 

31Bits 1/2M 1M 2M 4M 8M 16M 32M 
MSL 47 93 188 437 1234 2094 3703 
LSD8 47 109 234 454 938 1875 3859 
LSD16 94 234 500 1031 2047 4250 8656 
JS 109 234 516 1062 2219 4640 9672 
SS 109 250 500 1031 2141 4500 9546 
MMA 109 234 500 1031 2172 4516 9438 
63Bits 1/2M 1M 2M 4M 8M 16M 32M 
MSL 62 141 250 594 1531 2765 5016 
LSD8 172 344 672 1328 2719 5563 10953 
LSD16 250 516 1015 2031 4563 8609 18891 
JS 156 329 672 1422 2969 6203 12922 
SS 140 313 640 1344 2781 5860 12203 
MMA 141 312 641 1360 2829 5906 12359 

5   Conclusion and Future Work 

MSL is a sub-linear in-place radix-sorting algorithm, for uniform data. Switch sort is 
a non-quadratic implementation of quicksort. Future work includes low run time 
algorithms and models for sorting as well as for other problems. 
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