

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 788 – 791, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Fast In-place Integer Radix Sorting

Fouad El-Aker

Computer Science Department, University of Petra,
P.O. Box 940650, Amman 11194, Jordan
elaker_fouad@maktoob.com
elaker_fouad@yahoo.ca

Abstract. This paper presents two very efficient sorting algorithms. MSL is an
O(N*B) in-place radix sorting algorithm, where N is the input size and B is the
keys length in bits. This paper presents an implementation of MSL that is sub-
linear in practice, for uniform data, on Pentium 4 machines. We also present an
O(N*logN) hybrid quicksort that has a non-quadratic worst case.

1 Introduction

Right to left LSD and left to right MSD are O(N*B) radix sorting algorithms. N is the
input size and B is the length of keys in bits. LSD and MSD use an extra space of size
N. ALR [4] and MSL [1] process bits left to right, however unlike MSD, ALR and
MSL are in-place and cache friendly. MSD, ALR and MSL execute recursively, for
every partition. LSD body code is executed only B/D times, where B is the length of
keys in bits and D is the used digit size. This makes the design of algorithms faster
than LSD quite difficult. LSD is faster than MSD in [6]. We present a sub-linear run
time MSL implementation suitable for sorting 31 bits and 63 bits integers in Java in
this paper. MSL implementation in Section 2 uses small digit sizes increasing data
cache friendliness. MSL loops were implemented reducing the number of
instructions, and therefore increasing instruction cache friendliness. In addition,
section 3 presents a non-quadratic implementation of quicksort, called switch sort.
Hybridizing switch sort and MSL does not improve over MSL. Section 4 presents the
test results. Section 5 gives the conclusions and future work.

2 MSL and Smaller Digit Sizes

MSL and ALR use a permutation loop in order to avoid reserving an extra array of
size N, which is performed in MSD. The main steps of MSL are presented in [1].
MSL permutation loop, shuffles keys into their target groups. In the circular list of
keys, K = <K1, K2, .. , KL>, assume the Target Address (KJ) = Array Location (KJ+1),
where J is not equal to L, and Target Address (KL) = Array Location (K1). Digit
extraction and group end address lookup are used in computing a key’s target address.
MSL permutation loop moves keys in a circular list K to their target addresses. K1 is
named the initial key in K, and is computed prior to the permutation loop.

 Fast In-place Integer Radix Sorting 789

Many permutation loops are required in order to shuffle all keys in a group to their
target addresses. ALR searches for K1 sequentially, and preserves the property that all
keys to the left of the current K1 key are in their correct target addresses. MSL
searches groups’ information sequentially for the left most group, GLeft, which has at
least one key possibly not in its target address. MSL uses the top key in GLeft, as K1.

In [5], sections 4 and 5, digit size 6 was determined as appropriate for radix sorting
algorithms. This is because of data cache friendliness. The importance of cache
friendliness in radix sorting algorithms is emphasized in [5] and [4]. MSL also cuts to
insertion sort for group sizes 20 or less, same as [4].

3 Switch Sort

Hybridized quicksort [3] implementation in this paper selects one from many pivot
computations and is described in this section. Assume that we are interleaving the
execution of a constant number, K, of divide and conquer algorithms whose worst
cases are f1, f2 , .. fK. The list of algorithms is denoted AL = (A1, A2, .. AK). When AJ in
AL performance is degenerate, we interrupt AJ and switch execution to the next
algorithm in the circular list AL. AL worst case is equal to K * fW provided that the
following conditions hold. (1) fW = Min (f1, f2 , .. fK). (2) We can determine that the
current call to AJ is futile in constant time. (3) We can switch execution to the next
algorithm in the circular list AL without loosing the processing done so far. If each AJ
in AL executes a futile call, execution returns to AW after circular calls to other
algorithms in AL. A quicksort example is shown and described next.

SS(int A[], int A_Pivot, int l, int r, int min, int
max){

if (r – l + 1 <= 10) insertionSort (Array, l, r);

} else { Step 1: switch (Apply_Pivot) {

 case 0 : Pivot = max/2 + min/2 ; break;

 case 1: Pivot = Median_3 (A) ; break; }

 Step 2: Pos = partition (A, Pivot, l, r) ;

 Step 3.1: Compute R%;

 Step 3.2: if (R < 0.05) A_Pivot = A_Pivot ^1; // xor

 Step 4: Quicksort(A, A_Pivot, l, Pos, Pivot,
max);

 Quicksort(A, A_Pivot, Pos+1, r, min, Pivot);

 }

}

790 F. El-Aker

We measure balanced partitioning in quicksort to determine that the current call is
futile. The partitioning ratio is defined as the size of the smaller partition divided by
the size of the input group in quicksort. Let P% be the minimum acceptable
partitioning ration, over all the algorithms in AL, equals 5% in Step 3.2. R% is the
partitioning ration for the current quicksort call. When R% < P%, Step 3.2,
partitioning is named degenerate or a failure. AL code above has only quicksort
implementations, and a switch statement is used to decide which pivot computation to
use, see Step 1 above. We call the algorithm switch sort (SS). Step 3.2 selects an
alternative pivot computation for recursive calls. Max-Min average pivot computation
in the first line in Step 1 is an adaptive implementation of taking the middle value of
the input range in radix exchange [7]. Median of three quicksort passes down the
actual lower partition max and the actual upper partition min. Radix exchange always
divides the input range by half on recursive calls, independent of data. AL worst case
is O(2 * NlgN), where the worst case of radix exchange is O(2 * NlgN).

4 Experimental Results

In Table 1, MSL run time is non-significantly sub-linear in experiments. The test data
is uniform. The machine used for the displayed results is 3 GHz Pentium 4, 1GB
RAM, 1MB level 2 cache, and 16 KB level 1 cache, with 400 MHz RAM speed. MSL
sub-linear run time was confirmed on other Pentium 4 machines. In Table 1, add the
sizes at columns headings to the sizes at each row to get the array size at a cell. Row
30M+ (30 millions+) and column +5M refer to the cell for the array size 35 millions.

In Table 1, MSL running time for array size 35 millions is 4000 milliseconds, and
for array size 70 millions is 7875 milliseconds, 31 bits integers. In Table 1, the
running time for array size 25 millions, is 4032 milliseconds, and for array size 50
millions, is 7735 milliseconds, for 63 bits integers.

Cutting to insertion sort is an important factor in MSL. On the other hand, we
could not improve the running time of MSL by hybridizing MSL with switch sort.
MSL and switch sort are compared against other algorithms in Table 2.

Table 1. MSL running times in milliseconds. Sizes are multiple of M=106

31Bits +1M +2M +4M +5M +6M +8M +10M
N=0+ 93 188 437 657 890 1234 1469
N=10M+ 1563 1671 1875 1984 2094 2266 2500
N=20M+ 2578 2678 2891 2984 3078 3281 3484
N=30M+ 3594 3703 3906 4000 4125 4344 4547
N=40M+ 4671 4766 5000 5079 5218 5390 5625
N=50M+ 5782 5875 6062 6172 6313 6532 6734
N=60M+ 6890 6953 7172 7313 7453 7656 7875
63Bits +1M +2M +4M +5M +6M +8M +10M
N=0+ 141 250 594 843 1125 1531 1859
N=10M+ 2016 2157 2485 2594 2765 3016 3281
N=20M+ 3469 3578 3859 4032 4141 4438 4735
N=30M+ 4860 5016 5328 5469 5625 5891 6203
N=40M+ 6375 6500 6797 6953 7125 7406 7735

 Fast In-place Integer Radix Sorting 791

LSD, digit size 8 (LSD8) is faster than LSD with digit size 16, LSD16, and other
digit sizes, on the test machine. LSD processes the total keys bits. MSL processes
only the distinguishing prefixes, but is recursive (section 1). In Table 2, MSL has half
the run time of LSD8 for 63 bits data. In addition, MSL is better than LSD8 for larger
31 bits arrays. See size 16 and 32 millions as well as MSL sub-linear run time in
Table 1. Switch sort (SS), is faster than LSD16, 63 bits longs data. Switch sort is also
faster than the two algorithms, which Switch sort alternates, quicksort and Max-Min
Average (MMA). Java built in tuned quicksort (JS), which is a tuned implementation
of [2], is used in Table 2, instead of our own slower median of three quicksort.

Table 2. MSL running times in milliseconds. Sizes are multiple of M=106

31Bits 1/2M 1M 2M 4M 8M 16M 32M
MSL 47 93 188 437 1234 2094 3703
LSD8 47 109 234 454 938 1875 3859
LSD16 94 234 500 1031 2047 4250 8656
JS 109 234 516 1062 2219 4640 9672
SS 109 250 500 1031 2141 4500 9546
MMA 109 234 500 1031 2172 4516 9438
63Bits 1/2M 1M 2M 4M 8M 16M 32M
MSL 62 141 250 594 1531 2765 5016
LSD8 172 344 672 1328 2719 5563 10953
LSD16 250 516 1015 2031 4563 8609 18891
JS 156 329 672 1422 2969 6203 12922
SS 140 313 640 1344 2781 5860 12203
MMA 141 312 641 1360 2829 5906 12359

5 Conclusion and Future Work

MSL is a sub-linear in-place radix-sorting algorithm, for uniform data. Switch sort is
a non-quadratic implementation of quicksort. Future work includes low run time
algorithms and models for sorting as well as for other problems.

References

1. Al-Badarneh Amer, El-Aker Fouad: Efficient In-Place Radix Sorting, Informatica, 15
(3), 2004, pp. 295-302.

2. J. L. Bentley, and M. D. McIlroy: Engineering a Sort Function, Software-Practice and
Experience, 23 (1), 1993, pp. 1249-1265.

3. F. El-Aker, and A. Al-Badarneh: MSL: An Efficient Adaptive In-place Radix Sorting
Algorithm, ICCS, Part II, 2004, pp. 606-609.

4. Maus, A.: ARL: A Faster In-place, Cache Friendly Sorting Algorithm, Norsk
Informatikkonferranse, NIK'2002, 2002, pp. 85-95.

5. N. Rahman and R. Raman: Adapting radix sort to the memory hierarchy, Proc. 2nd
Workshop on Algorithm Engineering and Experiments, ALENEX, 2000.

6. Sedgewick, R.: Algorithms in Java, Parts 1-4, 3rd Ed., Addison-Wesley, 2003.

	Introduction
	MSL and Smaller Digit Sizes
	Switch Sort
	Experimental Results
	Conclusion and Future Work
	References

