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Abstract. Modeling unsaturated flow using numerical techniques such
as the finite element method can be especially difficult because of the
highly nonlinear nature of the governing equations. This problem is even
more challenging when a steady-state solution is needed. This paper
describes the implementation of a pseudo-transient technique to drive the
solution to steady-state and gives results for a real-world problem. The
application discussed in this paper does not converge using a traditional
Picard nonlinear iteration type finite element solution. Therefore, an
alternate technique needed to be developed and tested.

1 Introduction

Modeling unsaturated flow using numerical techniques such as the finite ele-
ment method can be especially difficult because of the highly nonlinear nature
of the governing equations. This challenge is even more exacerbated when (1)
a steady-state solution is needed, (2) soil properties such as relative hydraulic
conductivity go from almost horizontal to almost vertical (see Fig. 1), (3) an
influx of water from rainfall occurs at the top of very dry, low hydraulic con-
ductivity unsaturated soil, (4) injection wells are in the unsaturated zone (see
IG-1 in Fig. 2), and (5) some pumped wells become totally above the water table
or in the unsaturated zone. An early version of the data set for the application
discussed in this paper has all of these traits, and the steady-state solution does
not converge using a traditional Picard nonlinear iteration finite element solu-
tion. The data set needed to be modified to relieve some of the above problems,
but a converged solution was needed to know what changes to make. Therefore,
an alternate solution was developed and tested. This paper describes the im-
plementation of a modified version of a pseudo-transient technique described in
[3] to drive the solution to steady-state and gives computational results for this
real-world application.
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Fig. 1. This figure illustrates the relative hydraulic conductivity versus pressure head

curve for soils such as sand where the curve goes from almost horizontal to near vertical

rather quickly

Fig. 2. This figure shows the top twenty layers of the mesh. There are 18 different

material types. A large injection well, IG-1, in the unsaturated zone is also shown

The computer model used in this study is the parallel version [7] of FEMWA-
TER [5], which is a groundwater flow and transport code. The finite element
mesh is partitioned using METIS [2].
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2 Description of the Application

The problem consists of modeling the remediation of a military site using a
pump-and-treat system. The finite element mesh uses 402,628 nodes and 779,328
three-dimensional prism finite elements. There are 18 different soil types, 9 in-
jection wells, 1 chimney drain which also injects water, and 38 extraction wells.
Once the model is properly calibrated with observed data, it is then used to
predict the efficiency of a proposed pump-and-treat system. Table 1 shows the
saturated hydraulic conductivities for the three material types at the top of the
ground (16-18 in Fig.2). The incredibly small kz = 0.0001 ft/hour where the
ground is very dry and water from precipitation is coming into the system adds
significantly to the difficulty of convergence.

Table 1. Saturated hydraulic conductivities (ft/hour)

Material Number kx ky kz

16 1.042 1.042 0.008

17 0.08 0.08 0.008

18 0.01 0.01 0.0001

3 Flow Equations

Pressure head for steady-state conditions in FEMWATER is modeled by apply-
ing conservation of mass to obtain,

∇ ·
[
kr (h)ks ·

(
∇h +

ρ

ρ0
∇z

)]
+

Nss∑
m=1

ρ∗m
ρ0

Qmδ (r − rm) = 0 , (1)

h =
p

ρ0g
. (2)

where δ is the Dirac delta function, g is the acceleration due to gravity, h is the
pressure head, kr (h) is the highly nonlinear relative hydraulic conductivity, ks

is the saturated hydraulic conductivity tensor, Nss is the number of source/sink
nodes for flow, Qm is the quantity of flow at the mth source/sink node, p is the
pressure, ρ is the density with contaminant, ρ0 is the density without contami-
nant, ρ∗m is the density of the mth source/sink fluid, r is a vector from the origin
to an (x, y, z) point in space, and rm is the location of the mth source/sink node.

The Galerkin finite element method is then applied to obtain

K (h)h = Q
′
(h) . (3)

Here K (h) is the stiffness matrix, h is a vector of pressure heads at the finite
element nodes, and Q′ (h) is a collection of flow type terms for the right-hand
side. Eq. 3 is the resulting system of nonlinear equations to be solved.
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4 Solution of the System of Nonlinear Equations

A Newton iteration [4] to reduce the nonlinear residual,

F (h) = Q
′
(h) − K (h)h . (4)

is given by
hn+1 = hn − F

′
(hn)−1 F (hn) , (5)

F
′
(h)ij =

∂ (F)i

∂ (h)j

(h) . (6)

where F
′
(h) is the Jacobian matrix. FEMWATER uses a Picard iteration, which

is equivalent to approximating the Jacobian matrix by −K. This produces

hn+1 = hn + K−1
n

(
Q

′
n − Knhn

)
= K−1

n Q
′
n . (7)

The disadvantage of the Picard approximation is the loss of potentially im-
portant terms, but the advantage is that the system of simultaneous, linear
equations to be solved (Eq. 7) remains symmetric and positive-definite. Thus, a
parallel preconditioned conjugate gradient solver works quite well.

4.1 Convergence of the Steady-State Problem

Because of factors such as the severe relative hydraulic conductivity curve shown
in Fig. 1, the steady-state solution for this data set did not converge. Convergence
is helped somewhat by adding a dynamic type relaxation to the Picard iteration
as follows:

hn+1 = (1 − αn+1)hn + αn+1h̄n+1 0 < αn+1 ≤ 1 , (8)

h̄n+1 = K−1
n Q

′
n . (9)

where the relaxation factor αn+1 is adjusted based on whether the maximum
absolute value of the pressure head change |�h|max

n+1 between hn and h̄n+1 for
all the N finite element nodes,

|�h|max
n+1 =

N
max
i=1

∣∣(h̄n+1

)
i
− (hn)i

∣∣ . (10)

decreased or increased from |�h|max
n . The adjustment used is

αn+1 = min (αn + εα, αmax) |�h|max
n+1 ≤ |�h|max

n , (11)

αn+1 = max (fααn, αmin) |�h|max
n+1 > |�h|max

n , 0 < fα < 1 . (12)

where εα, fα, αmin, and αmax are input variables. Values that worked well for
this application are εα = 0.005, fα = 0.667, αmin = 0.01, and αmax = 0.5.
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4.2 Pseudo Time-Step Implementation

For those problems such as the initial data set used in this study where the
steady-state Picard iteration would not converge, an additional term is added
to Eq. 3 to produce

fm+1M
(
hm+1

) (
hm+1 − hm

)
+ K

(
hm+1

)
hm+1 = Q

′ (
hm+1

)
. (13)

where fm+1 is a multiplication factor equivalent to the reciprocal of a time
increment for pseudo time-step m + 1, hm is pressure head for pseudo time-step
m, and after some experimentation, M was chosen to be the diagonal of K.
Adding this term is acceptable because eventually steady-state will be achieved,
and thus hm+1 ≈ hm, causing the additional term to vanish. The Picard iteration
for this implicit Euler approximation now becomes,

hm+1
n+1 =

(
fm+1Mm+1

n + Km+1
n

)−1
(
Q

′m+1
n + fm+1Mm+1

n hm
)

. (14)

To compute fm+1, the norm of the residual must first be computed. The
residual is computed from

Fm+1
1 = Q

′m+1
1 + fm+1Mm+1

1 hm − (
fm+1Mm+1

1 + Km+1
1

)
hm+1

1 . (15)

But since the pressure head at time-step m is the same as that of the first
nonlinear iteration of time-step m + 1,

hm+1
1 = hm , (16)

Eq. 15 becomes
Fm = Q

′m − Kmhm . (17)

Using the discrete l2 norm on RN ,

‖Fm‖ =

√√√√ 1
N

N∑
i=1

(Fm)2i , (18)

fm+1 is computed by using a version of the switched evolution relaxation (SER)
algorithm [6] as follows:

fm+1 = fm ‖Fm‖
‖Fm−1‖ . (19)

In most cases, the nonlinear iteration for a pseudo time-step converged in
a few Picard iterations. However, occasionally the same instability that caused
the need for the pseudo time-step algorithm in the first place generated a lack
of convergence after 50 iterations. If that happened, fm+1 was modified by

fm+1 = fm+1 +
1
2
f0 . (20)
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every 50 iterations until convergence occurred. f0 is computed from the input
value of �t by

f0 =
1
�t

. (21)

Also,
f1 = f0 . (22)

The advantage of this approach is that each new pseudo time-step brings the
solution closer to steady-state, and the added term in Eq. 13 is simpler than
the real transient term that could be used. Doing only one nonlinear iteration
per pseudo time-step was also tried, but for this application, the instability so
dominated that a full convergence of each pseudo time-step seemed best. For this
data set, fm+1 always became so small that the inherent instability reemerged
such that fm+1 would become bigger. However, the residual gradually became
smaller for most pseudo time-steps. Initially, a number of traditional Picard
nonlinear iterations (fm+1 = 0) are done, and only if convergence is not achieved
the traditional way is the pseudo time-stepping started. This way, only isolated
areas in the unsaturated zone need further adjustment.

5 Results

The application data set was run on the ERDC MSRC SGI 3900 with 32 pro-
cessors using the material properties given in Table 1 with additional data de-
scribed in Table 2. Time required to do the computation was 19,593 seconds
(5.4425 hour). It was not practical to do a true transient solution with the ma-
terial properties given in Table 1, as convergence was so difficult, even when
increasing the pumping rates and precipitation flux gradually. Thus the mate-
rial properties were modified as shown in Table 3 to an easier problem. The
consequence of changing the material data is that a different problem is solved.
It will, however, allow the comparison of errors between a true transient solution
and a more difficult problem solved by the pseudo time-stepping technique.

To determine accuracy, six wells in the unsaturated zone are examined for
error between the input pumping rates and those produced after the solution
process. The true transient solution was run for a simulation time of 288 hours

Table 2. Computational data

Number of traditional Picard iterations 1,000

Tolerance for convergence of Picard iterations 0.0005

Number of pseudo time-steps 1,000

�t for computing f0 0.05
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Table 3. Modified saturated hydraulic conductivities (ft/hour)

Material Number kx ky kz

16 1.042 1.042 0.1042

17 0.04 0.04 0.004

18 0.02 0.02 0.002

Table 4. Errors in well pumping rates

Well Number Pseudo time-stepping True transient

1 3.12E-09 1.52E-05

2 -3.22E-07 1.20E-05

3 -4.67E-05 7.39E-06

4 4.15E-09 4.64E-06

5 2.31E-09 -1.86E-04

6 -6.67E-07 2.63E-05

using the relaxed soil properties. Table 4 shows a comparison of the error in the
well pumping rates for the two different techniques.

6 Conclusions

The pseudo time-stepping algorithm gives an acceptable alternative to achiev-
ing a steady-state solution to the highly nonlinear unsaturated flow groundwater
problem when convergence is not obtained by traditional methods. Further, au-
tomatic determination of the pseudo time-step size is easily found. Results also
show that accuracy can be achieved easier than doing a true transient compu-
tation. For this application, the pseudo time-stepping algorithm is currently the
only way found thus far to achieve a solution because of the complexities of the
true transient term which is also highly nonlinear.

7 Future Work

As described in [1], alternate approaches will next be investigated. One example
is to use Newton iterations with line search after a given number of Picard itera-
tions have been completed. Also, the nonlinear Newton-Krylov solvers described
in [8] will be investigated.
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