
 

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 477 – 484, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Toward GT3 and OGSI.NET Interoperability: 
GRAM Support on OGSI.NET∗ 

James V.S. Watson, Sang-Min Park, and Marty Humphrey 

Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA 

Abstract. OGSI.NET is the implementation of the Open Grid Services Infra-
structure (OGSI) that leverages the Microsoft .NET Framework. OGSI.NET 
and the Globus Toolkit combine to create a comprehensive platform for compu-
tational science by supporting the emerging Grid protocols on Windows and 
Linux/UNIX, respectively. A significant challenge in building OGSI.NET is in-
teroperability with the Globus Toolkit, both in terms of the rendering of indi-
vidual services (OGSI-compliance and more recently WSRF-compliance) and 
also conformance to higher-level protocols developed in the Globus project and 
in the Global Grid Forum. This paper presents the design and experiences of 
implementing the Globus GRAM protocols on OGSI.NET. A major challenge 
was to easily and securely create processes as specific target users in the Win-
dows environment. Differences between GT3 GRAM and OGSI.NET GRAM 
are described and an overview of WSRF.NET GRAM is presented.  

1   Introduction 

It is generally believed that the foundation of next-generation Grids will be the Open 
Grid Services Architecture (OGSA)[1], which is an overall vision for Grid computing 
that combines the strengths of projects such as Globus [2] and Legion [3] with Web 
Services. OGSA endorses the service-oriented architecture as the foundation of Grid 
Computing. The introduction of the largely abstract OGSA was accompanied by the 
Open Grid Services Infrastructure (OGSI)[4], which attempted to specify the low-
level interfaces and—to a certain extent—the behaviors of the individual services in 
an OGSA-compliant Grid. OGSI defined a particular rendering of the service by using 
both standard and non-standard uses of the XML, SOAP, and the Web Services De-
scription Language (WSDL). The Grid community actively contributed to the defini-
tion of OGSI through the Global Grid Forum (GGF) standardization process. 
OGSI.NET [5] is the implementation of the Open Grid Services Infrastructure (OGSI) 
that leverages the Microsoft .NET Framework. OGSI.NET and the Globus Toolkit 
combine to create a comprehensive platform for computational science by supporting 
the emerging Grid protocols on Windows and Linux/UNIX, respectively. 

An important use of a computational grid is allowing users to submit jobs to the 
grid without needing explicit knowledge of which machines are being used or logging 
                                                           
∗ This work is supported in part by the US National Science Foundation under grants ACI-

0203960 (Next Generation Software program), SCI-0438263 (NSF Middleware Initiative), 
the US Department of Energy through an Early Career Grant, and Microsoft Research. 



478 J.V.S. Watson, S.-M. Park, and M. Humphrey 

 

onto each machine manually.  For example, a user may desire to run a parameter-
space problem in which hundreds of similar jobs can be executed in parallel.  The 
user would prefer to authenticate himself only once to the computational grid, though 
many machines may be used to execute these parallel jobs.  The user will also prefer 
to create these many job specifications with a minimum of effort and not have to 
configure the job specifications based on which machines are being utilized for  
each job. 

A significant challenge in building OGSI.NET is interoperability with the Globus 
Toolkit, both in terms of the rendering of individual services (OGSI-compliance and 
more recently WSRF-compliance [6]) and also conformance to higher-level protocols 
developed in the Globus project and in the Global Grid Forum.  Specifically with 
regard to remote execution described above, the challenge is to conform to the Grid 
Resource Allocation Manager (GRAM) [7] of the Globus Toolkit. This paper reports 
the implementation experiences of the development of GRAM-supporting services on 
OGSI.NET. A major challenge was to easily and securely create processes as specific 
target users in the Windows environment. This work is the first attempt to expand the 
Grid to include remote job execution on Windows machines via GRAM, as GT3 is 
only able to run on Windows machines now in a limited client-side mode via the Java 
Cog [8]. A .NET client was also written that runs on Windows and can submit jobs to 
machines running GT3 or OGSI.NET. These results provide the basis for remote 
execution currently being created in our implementation of WSRF on .NET [9] [10]. 

The next section reviews GRAM.  Section 3 describes Windows security issues 
that came up as a result of trying to implement the same functionality of GRAM on 
Windows machines.  Section 4 explains OGSI.NET GRAM, interoperability between 
Windows and Linux machines, and an example usage of this set of services. Section 5 
gives a brief overview of WSRF.NET GRAM. Section 6 concludes this paper. 

2   Review of GRAM 

GRAM running on GT3 allows a user to easily submit a job and have it execute on 
the machine running the GRAM set of services.  The Globus Resource Specification 
Language (RSL) [7] is an XML schema-defined language that is used by the user to 
specify the job submission.  Many aspects of a job submission can optionally be in-
cluded, such as the starting directory, user environment, and non-local input files.  
Substitution values are also allowed so that values can be better controlled and up-
dated.  For example, if the only changes in a parameter space problem were a single 
argument and related output filename, the user could specify the value like so: 
<rsl:substitutionDef name= "ArgValue"> <rsl:stringElement value="50"/> 
</rsl:substitutionDef>.  The user would then be able to specify this value in multiple 
locations in the job submission like so: <rsl:substitutionRef name="ArgValue"/>. 

Job submissions are authenticated by the use of a gridmap file located on each 
server, which contains a mapping between an X509 certificate DN and a local user 
name.  The job submission is signed with the user's X509 certificate.  The DN from 
the signature is then compared to the entries in the gridmap file.  If a match is found, 
the job submission is accepted and the job will be run as the local user specified in the 



 Toward GT3 and OGSI.NET Interoperability: GRAM Support on OGSI.NET 479 

 

gridmap file.  By running the job as a local user, the damage a malicious user can 
cause is limited to whatever access rights the local user already holds. 

3   Windows Security 

In this section, we describe the relevant aspects of Windows security that in some 
cases were leveraged and in some cases had to be overcome in order to implement 
GRAM in OGSI.NET. Implementing the GRAM set of services on Windows proved 
to be rather challenging because of the security mechanisms that are available in 
Linux and are not easily accessible in Windows.  The major hurdle in Windows secu-
rity is creating a new process (in this case, the actual job to run on the machine) as a 
different user than the user asking for the process to be created. 

Security in Windows is based, in part, on passing user tokens to authentication 
methods.  The well-documented methods available to create a new user token require 
a user name and password combination in clear text. If these well-documented meth-
ods are used, there are a number of possibilities for implementation.  In one case, the 
user securely enters in the password for each job submission.  Obviously, this is unde-
sirable because it does not allow a user to sign-on once and for the grid services to 
authenticate the user on each machine.  Another option is to include the user name 
and password pair in the gridmap file.  This option has two major problems.  If the 
file containing the passwords is read by a malicious user, that user can access the 
system as any user that is listed in the file.  By mapping the DN to a local user name, 
the ability to read the gridmap file does not make it easier for a malicious user to gain 
access to the system by impersonating another user because it is assumed that the DN 
is hard to forge.  Another problem is that the gridmap file will need to be changed 
every time the user changes his password on the machine, which would likely result 
in an updating nightmare for the system administrator. 

UNIX and Linux systems allow a setuid bit to be set on files.  When this bit is set 
on an executable, the executable may change the effective user id so that it can access 
resources that are inaccessible to the user that ran the executable.  The call to change 
the effective user id only requires that the setuid bit be set on the executable. 

There is a method on Windows called NtCreateToken() that is located in ntdll.dll.  
In order to use the NtCreateToken() method, the user running the executable that calls 
NtCreateToken() must be given the Create Token privilege.  The call to NtCreateTo-
ken() is not as simple as the call to setuid() in *nix systems, which only requires the 
new user id.  NtCreateToken() requires 12 input parameters that must be properly set 
for a new user token to be created.  Since this method is undocumented in Windows 
help files, our code was influenced by other code that required the use of NtCreateTo-
ken(): CVSNT, Cygwin, and GUI-Based RunAsEx.  Currently, the user token infor-
mation also must be located on the machine where this code is running.  This means 
that a user name cannot be intended to refer to an account name that is on a domain 
other than the local machine. 

An important difference between the setuid bit and the NtCreateToken() method is 
the extent of the privileges.  On *nix systems, the ability to impersonate other users is 
confined to the executable that has the setuid bit set, but any user with the proper 
permissions can run that executable.  On Windows systems, the privilege to call 



480 J.V.S. Watson, S.-M. Park, and M. Humphrey 

 

NtCreateToken() is given to users, instead of executables.  This means that the user 
who runs any executable that eventually calls NtCreateToken() must have the Create 
Token privilege.  This greatly increases the amount of code that is now susceptible to 
malicious users who would then gain the ability to run an executable as any user. 

 

Fig. 1. OGSI.NET GRAM Architecture 

4   OGSI.NET GRAM 

The service architecture of OGSI.NET GRAM is based on GT3 GRAM and appears 
in Figure 1.  The top service is the Master Managed Job Factory Service (MMJFS).  
This persistent service waits for new job submissions.  When a job submission is 
received and the request is authenticated with the gridmap file, a Managed Job Fac-
tory Service (MJFS) may be created.  In order to efficiently use local resources, at 
most one MJFS for each local user name that appears in the gridmap file will be run-
ning at any time.  When the first job to run as a given local user name is submitted, a 
new MJFS is created and the job submission is forwarded to the new MJFS.  Other-
wise, the MMJFS will forward the job submission to the MJFS that already exists for 
the given local user name.  When a MJFS receives a job submission, it creates a new 
Managed Job Service (MJS) that will actually execute and monitor the job as it runs 
locally on the system.  The MJS creates two File Stream Factory Services (FSFS), one 
corresponding to standard output and one for standard error.  Each FSFS will then 
create as many File Stream Services (FSS) as are specified in the job submission.  The 
reason that a user can specify multiple locations is to make it easier for job results to 
be distributed.  For example, a single user submits a job, but the user may wish all 
members of his group to receive the results.  The RSL allows the user to not have to 
worry about sending the results out after the job has completed.  The MJFS, FSFS, 
and FSS names appear in parentheses because the services are used by the system to 
satisfy the job submission, but it is not necessary for the user submitting the job to 
know that they exist.  When a user submits a job, a reference to the newly created 
MJS is returned. 



 Toward GT3 and OGSI.NET Interoperability: GRAM Support on OGSI.NET 481 

 

4.1   Differences Between OGSI.NET and GT3 GRAM 

The GRAM set of services in GT3 also includes a Resource Information Provider 
Service (RIPS) that actually accesses the underlying operating system to get system-
specific information, such as the scheduling and file systems.  The MMJFS and MJS 
instances will subscribe to the RIPS to acquire information about the local system and 
job state changes, respectively. While we understand that this type of information is 
arguably necessary for OGSI.NET MMJFS and MJS instances, we do not believe that 
it is necessary to conform to the specific interfaces of the Globus RIPS at this time.  

When the requested executable is actually run, the executable is called by invoking 
the Windows method CreateProcessAsUser() and passing in the user token created by 
NtCreateToken().  Except for the specified executable, everything in the OGSI.NET 
GRAM set of services run as the user with the Create Token privilege.  The GRAM 
set of services in GT3, however, create each MJFS as the specified local user.  This 
reduces the amount of security vulnerabilities that may allow a malicious user to gain 
access to the system as any user. 

4.2   Interoperability 

In many ways, the single criteria for success for OGSI.NET remote job execution is to 
faciliates clients on both Windows and Linux machines to send job submissions to 
both Windows and Linux machines with a minimum of user interaction. 

By solely using GRAM in GT3, it is possible to take a Linux client and submit a 
job to a Linux machine running GT3.  The Globus Alliance offers a Java CoG Kit [8] 
which offers some client functionality, but does not offer a client that can use the 
version of GRAM in GT3.  Java CoG Kit version 1.1 only supports up to version 
2.4.0 of the Globus Toolkit.  Analysis of the client code offered in the GT3 source 
download revealed that it is possible to invoke a Java-only client that can use GRAM 
in GT3, thus allowing a Windows client to also submit jobs to a Linux machine run-
ning GT3. 

The job submission sent from the client must be signed with the user's certificate 
in order for the server to properly authenticate the job submission request.  In GT3, 
the versions of the WS-Security specification and other Web Services specifications 
are provided as part of the GT3 implementation, while OGSI.NET uses Microsoft's 
Web Services Enhancements 2.0 (WSE 2.0) [11].  In early development, we had diffi-
culty getting our implementation of WS-Security to interoperable with the version of 
WS-Security in GT3. However, this has since been resolved as both implementations 
have recently conformed to the Basic Security Profile of the Web Services Interop-
erability group (WS-I [12]). 

4.3   Example Usage 

The prototypical use case is shown in Figure 2.  At the time of this writing, due to 
incompatible security protocols inherited from tooling on both the Windows and 
Linux platforms, currently, there is no client that can run on Linux that can submit a 
job to OGSI.NET GRAM (although we expect this to change shortly).  GT3 already 
provides a Linux client that can submit a job to GT3, so the arrow in Figure 2 indicat-
ing that functionality is not applicable to the work described in this paper.  We have 



482 J.V.S. Watson, S.-M. Park, and M. Humphrey 

 

our client run from a Windows Server 2003 machine to show that the Windows client 
and server do not have to run the exact same operating system (i.e., Windows XP). 

 

 

Fig. 2. Example Machine Configurations 

The Windows client that we developed invokes either an OGSI.NET client or a 
Java GT3 client (via the Java Cog), depending on the machine that is being contacted.  
Other than the simple switch to know which client code to invoke, the arguments are 
exactly the same. 

While GridFTP has been implemented as part of the OGSI.NET project, it is not 
currently fully-integrated into the OGSI.NET hosting environment such that a server 
can move files on behalf of a user automatically. Therefore, the client also examines 
the job submission file and downloads the first standard output and standard error 
files to the client's current running directory.  This allows a client to easily view the 
results of running the job without having to manually check the output files on the 
server.  This GridFTP functionality requires "grid-proxy-init" and "globus-url-copy" 
from the Java CoG Kit and GridFTP instances running on the servers. 

In our testing, to ensure that the job was being run as the proper local user we set 
up the same file on both OGSI.NET servers that explicitly denied access to user Foo1.  
The same X509 certificate DN referred to different local user names on the two 
OGSI.NET servers (users Foo1 and Foo2).  When the job submission included the 
DOS command "type" and specified the above file, one server displayed the contents 
of the file, while the other server denied the user access to that file and printed the 
error to standard error. 

Running this client exposed the fact that Windows has a concept similar to real 
and effective user ids like *nix systems.  For example, executing a .NET program as 
the job submission that displays the value System.Environment.UserName will show 
the name of the user that has the Create Token privilege.  Running the Cygwin 
"whoami" command instead will show the local user name that is in the gridmap file. 

5   WSRF.NET GRAM 

In this section, we introduce a new GRAM implementation currently being developed 
on top of WSRF.NET. The Web Service Resource Framework (WSRF), announced in 



 Toward GT3 and OGSI.NET Interoperability: GRAM Support on OGSI.NET 483 

 

January 2004, is an effort to create stateful web services by defining “WS-Resources” 
[6]. It provides an abstraction of stateful resources which could be identified by exist-
ing web service technologies (e.g., WS-Addressing). Globus Tookit version 4 (GT4) 
is now being developed based on the WSRF concepts.  GRAM in GT4 has different 
features from GT3 GRAM. The Job (process) is now modeled as a WS-Resource, and 
a client can interact with a job through operations defined in WSRF portTypes and 
GRAM Services. In other words, a client can submit a job through an operation in the 
GRAM Factory Service, and query the job’s state using one of the resource property 
operations defined in WSRF. 

WSRF.NET is an implementation of full set of WSRF and WS-Notification speci-
fications on Microsoft .NET [9]. WSRF.NET GRAM is an implementation of GRAM 
services using WSRF.NET libraries and tooling. GT4 GRAM defines two WSRF-
compliant web services, ManagedJobFactoryService (MJFS) and ManagedJobService 
(MJS). It also defines an xml-based job description language. WSRF.NET GRAM 
exposes these two web services and accepts the job description. The ManagedJobFac-
toryService keeps information of hardware and software resources (e.g., localResour-
ceManager) as WS-Resources and reflects their state as resource property document. 
WS-Resources in the ManagedJobService are information of process. 

When a job-creation operation is called by a client, MJFS creates a new resource as 
a Windows process and the process is executed under the local user name which is 
different from the user name running ASP.NET infrastructure. The process handle is 
used to expose a process. WSRF.NET has a mechanism to save and retrieve the proc-
ess handle to/from a database so that the process information can be sustained. The 
client may query MJS about the resource property of process (e.g., process state) 
using operations defined in the WSRF Resource Property portTypes. When the job’s 
state changes, MJS notifies the client of new state using the WS-Notification libraries 
implemented in WSRF.NET. After receiving the ‘done’ or ‘failed’ notification, the 
client terminates. 

The Globus Toolkit has been using the proxy certificate for WS-Security, and it 
has been the biggest challenge for interoperability. In WSRF.NET we support WS-
Security processing with GT proxy certificate, thus GT4 GRAM and WSRF.NET 
GRAM are interoperable. In other words, users can submit the job to WSRF.NET 
GRAM services using GT4 client tools. In our future release, we are planning to pro-
vide a secure and reliable authorization mechanism, a delegation service, and file 
movement service all of which will be incorporated in WSRF.NET GRAM. 

6   Conclusion 

Remote execution is a fundamental operation for Grids. Prior to the work described in 
this paper, there was no Grid-standards-compliant mechanism for remote execution 
on the Windows platform. In this paper, we described the design and implementation 
of GRAM for OGSI.NET, focusing on the security model and issues that had to be 
overcome.  We also described our prototype implement in WSRF.NET. We are cur-
rently building on this support to create the University of Virginia Campus Grid 
(UVaCG), using WSRF.NET and GT4 as the foundation of the Grid. By combining 
this new support for remote execution with our continuing support for remote data 



484 J.V.S. Watson, S.-M. Park, and M. Humphrey 

 

access via GridFTP and higher-level abstractions and GUIs, we have taken a signifi-
cant step toward the realization of the Grid as a ubiquitous platform for computational 
science. 

References 

[1] Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid 
Services Architecture for Distributed Systems Integration. Draft of 6/22/02. 
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf 

[2] Globus Project. http://www.globus.org 
[3] A.S. Grimshaw, A.J. Ferrari, F.C. Knabe and M.A. Humphrey, “Wide-Area Computing: 

Resource Sharing on a Large Scale,” IEEE Computer, 32(5): 29-37, May 1999. 
[4] S. Tuecke et. al. Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Fo-

rum. GFD-R-P.15. Version as of June 27, 2003. 
[5] G. Wasson, N. Beekwilder, M. Morgan, and M. Humphrey. OGSI.NET: OGSI-

compliance on the .NET Framework. In 4th IEEE/ACM International Symposium on 
Cluster Computing and the Grid (ccGrid 2004). Chicago, Illinois. April 19-22, 2004 

[6] K. Czajkowski., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., 
Tuecke, S., Vambenepe, W. 2004. The WS-Resource Framework. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf 

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. A 
Resource Management Architecture for Metacomputing Systems. Proc. IPPS/SPDP '98 
Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-82, 1998. 

[8] G. von Laszewski, I. Foster, J. Gawor, P. Lane. A Java Commodity Grid Toolkit. Concur-
rency: Practice and Experience, 13, 2001. 

[9] M. Humphrey, G. Wasson, M. Morgan, and N. Beekwilder. An Early Evaluation of 
WSRF and WS-Notification via WSRF.NET. 2004 Grid Computing Workshop (associ-
ated with Supercomputing 2004). Nov 8 2004, Pittsburgh, PA. 

[10] Web Services Resource Framework on the .NET Framework. http://www.ws-rf.net 
[11] Microsoft. Web Services Enhancements (WSE). 

http://msdn.microsoft.com/webservices/building/wse/default.aspx 
[12] Web Services Interoperability Organization (WS-I). http://www.ws-i.org 
 


	Introduction
	Review of GRAM
	Windows Security
	OGSI.NET GRAM
	Differences Between OGSI.NET and GT3 GRAM
	Interoperability
	Example Usage

	WSRF.NET GRAM
	Conclusion
	References

