An All-Reduce Operation in Star Networks Using All-to-All Broadcast Communication Pattern

Eunseuk Oh, Hongsik Choi, and David Primeaux

Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284-3068, USA {eoh, hchoi, dprimeau}@vcu.edu

Abstract. Most parallel computations require the exchange of data between processing elements. One of important basic communication operations is all-reduce, a variation of the reduction operation. This paper presents an all-reduce communication operation scheme using all-to-all broadcast communication pattern. All-to-all broadcast is the operation in which each processor sends its message to all other processors, and receives messages from all other processors in the system. In this paper, we develop an efficient all-reduce operation scheme in a star network topology with the single-port communication capability. Communication time is compared against known broadcasting schemes to verify the efficiency of the suggested scheme.

Keywords: all-reduce, all-to-all broadcast, distributed memory parallel computing systems, inter-processor communication, star network.

1 Introduction

Due to rapid progress in hardware technology, designing a distributed memory parallel computing system connecting autonomous microprocessors has become feasible. In such a system, high-performance microprocessors communicate by message passing and have no shared memory or global clock. Proper implementation of basic communication operations such as broadcast, reduction, and all-reduce on various parallel computing systems is key to the design of efficient parallel algorithms for distributed memory parallel systems.

One-to-all broadcast is an operation that disseminates information across processors in a multiprocessor system. It is not difficult to see that broadcasting stands as a foundation for many applications on parallel computing systems. To list a few applications that use broadcasting, we mention Fast Fourier Transformation (FFT), parallel matrix algorithms, parallel graph algorithms, and distributed algorithms. The all-reduce operation combines the arriving content in the input buffer of each processor using an associative operator (e.g. sum, maximum), and the result appears in the result buffer of all processors. All-reduce

Table 1. Comparison of topological properties for parallel computer models of similar sizes: n-Cube (hypercube), MCT (mesh connected tree), *Dⁿ* (de Bruijn network), and *HSn,m* (Cartesian product of hypercube and star)

Model			Size Degree Diameter Model				Size Degree Diameter
S_{5}	120			S_6	720		
7-Cube	128			10 -Cube 1024		10	10
$MCT_4(3)$ 81		12	16	$MCT_6(3)$ 729		18	24
D_7	128			D_{10}	1024		10
$HS_{4,3}$	144			$HS_{5,3}$	720		

is typically used for barrier synchronization on a distributed memory parallel computing system. Also, all-reduce is one of the most important MPI routines; a case study reveals that more than 40% of the execution time of MPI routines is spent in all-reduce or reduction operations [\[9\]](#page-7-1).

In this paper, we study an all-reduce communication operation in star networks by using all-to-all broadcast communication pattern. The all-reduce operation is identical to performing an all-to-one reduction which is followed by a one-to-all broadcast of the result. Thus, we will compare the communication time of our scheme with all-reduce operation by using the best known broadcast scheme proposed in [\[10\]](#page-7-2). We first design a recursive all-to-all broadcast scheme that can be utilized to perform the all-reduce operation.

The star model has attracted considerable interest in the parallel processing research community $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ $[1, 2, 3, 7, 8, 10, 11]$ due to its numerous desirable properties for building large parallel computer systems. Basic parameters such as size, degree, and diameter for the models whose size is similar to S_n are shown in Table 1.

Broadcasting schemes vary according to the communication capability of the channels or links. With single-port communication capability, every processor can simultaneously send and receive at most one message in one communication step. Also, a channel or link may be bidirectional or unidirectional. Cost measurements for the suggested scheme are provided under the single-port and bidirectional communication capability. Following the terminology used in [\[4\]](#page-7-9), our scheme is "NODUP" in that there is no duplication of information on messages carried during the communication process.

The remainder of this paper is organized as follows. In Section [2](#page-1-0) we introduce the communication model and the assumptions made about that model. In Section [3](#page-2-0) we present an all-to-all broadcast scheme. In Section [4](#page-3-0) we present an all-reduce operation based on our all-to-all broadcast scheme. In Section [5,](#page-6-0) we provide concluding remarks.

2 Model and Assumptions

The network model considered here is the star graph model. An n -star graph, S_n , consists of n! nodes labeled with the n! permutations on the symbols $\{1, 2, \ldots, n\}$. There is a communication link between two processors p_i and p_j in S_n if and only if the permutation label of p_i can be obtained from the permutation label of p_i by exchanging the symbol in the first position in p_i with the symbol in some other position in p_i . If the label of p_j is obtained from the label of p_i by exchanging the first symbol of p_i with the symbol in kth position of p_i , then p_i and p_i are said to be connected along the communication link k .

The pattern of interconnected processors in the star network can be viewed recursively as follows. S_1 is a trivial network with one processor. Suppose that S_{n-1} is defined inductively, then S_n is composed of n graphs, S_{n-1}^i , $i = 1...n$, where each S_i^i is an isomorphic copy of S_{n-1} with symbols $\{1, n\}$, $i > n$ where each S_{n-1}^i is an isomorphic copy of S_{n-1} with symbols $\{1,\ldots,n\} - i$, and
with symbol i appearing as the *n*th symbol in each processor in S_i^i . Connecting with symbol *i* appearing as the *n*th symbol in each processor in S_{n-1}^i . Connecting the nodes in different sories S_i^i and S_i^j is denough to the change the nodes in different copies S_{n-1}^i and S_{n-1}^j is done with respect to the above definition. A node u in S_{n-1}^i is connected to a node v in S_{n-1}^j , $i \neq j$ when the label of v can be obtained from the label of u by exchanging the first symbol with the *n*th symbol.

The communication model for parallel computers varies depending on the communication hardware and the memory bus bandwidth. Most commercial systems support the single-port model. In the single-port communication model, a processor can send a message on only one of its communication links at a time. The sending and the receiving ports are not necessarily the same. The system model we consider is as follows; (1) The system is completely connected with synchronous communication. (2) A processor sends a message to a connected processor in one communication step. (3) Single-port communication and the communication links are bidirectional.

3 All-to-All Broadcast

All-to-all broadcast is performed recursively. After performing all-to-all broadcast in each S_{n-1}^i , $i = 1, \ldots, n$, all-to-all broadcast in S_n is performed. To avoid
sending a message more than once to the same processor in the network, the prisending a message more than once to the same processor in the network, the private memory of each processor will be divided into two parts: the result buffer, and the outgoing message buffer. The partial sum will be stored in the result buffer.

All-to-All broadcast in S4*:* The algorithm first calls itself recursively to perform broadcast in each of S_3^1 , S_3^2 , S_3^3 , and S_3^4 . The base of the recursion is when
the network is an S_2 . The algorithm performs broadcast in S_2 by a simple exthe network is an S_2 . The algorithm performs broadcast in S_2 by a simple exchange of messages between the two processors. Then each processor in S_2 sends its message along communication link 3, and saves it in its result buffer. After that each processor sends its received message along communication link 2, and broadcast in S_3 is terminated. Now each S_3 in S_4 performs all-to-all broadcast in parallel fashion. At this point every processor computes its message by concatenating the message in its outgoing buffer with the message in its result buffer. Each processor stores the concatenated message in the result buffer, and writes a copy of the concatenated message over the current content of the outgoing buffer. We call this concatenated message the *meta message*. Then, every processor sends its meta message along communication link 4, and saves its message in its result buffer. Once a processor receives the message along communication link 4, it only needs to broadcast within each S_3 . It starts this process by sending its message along communication link 3, then 2, meanwhile storing received messages in the result buffer.

All-to-All broadcast in S_n : In general, suppose inductively that all-to-all broadcast has been completed within each S_{n-1}^i , $i = 1...n$, and let us see how this can be extended to all-to-all broadcast in S . Since all-to-all broadcast has this can be extended to all-to-all broadcast in S_n . Since all-to-all broadcast has been completed in each S_{n-1}^i , each processor in S_{n-1}^i has received the messages
from all other processors in S_i^i and hence all processors in S_i^i share the same from all other processors in S_{n-1}^i , and hence all processors in S_{n-1}^i share the same
information. Denote the meta message in S_i^i so by A^i such $A = | \cdot |^n A^i$ information. Denote the meta message in S_{n-1}^i by Δ_{n-1}^i . Let $\Delta_n = \bigcup_{i=1}^n \Delta_{n-1}^i$, then all to-all broadcast in S, is achieved once every processor in S, holds Δ . then all-to-all broadcast in S_n is achieved once every processor in S_n holds Δ_n . All-to-all broadcast is performed as follows. In the first stage every processor p in S_{n-1}^i , $i = 1...n$, broadcasts its meta message Δ_{n-1}^i along communication link
n and saves the meta message in its result buffer. After this stage each S^i n and saves the meta message in its result buffer. After this stage, each S_{n-1}^i
contains all messages in Λ among its processors. Thus, the only thing left to contains all messages in Δ_n among its processors. Thus, the only thing left to be done in the second stage is to propagate the information within each S_{n-1}^i .
This step needs to be done with some care so that to avoid sending a message This step needs to be done with some care so that to avoid sending a message more than once to the same processor. Once p receives the meta message Δ_{n-1}^j , ℓ , j , also a communication link n , it associates Δ_{n-1}^j , also an aliment $j \neq i$, along communication link *n*, it propagates Δ_{n-1}^j across S_{n-1}^i by sending it along communication links $n-1$, $n-2$, across S_{n-1}^i by sending it along communication links $n-1, n-2, \ldots, 2$, respectively. Also, the received message is stored in the result buffer.

Theorem 1. At the termination of all-to-all broadcast, each processor in S_n *holds the meta message* Δ_n *.*

4 All-Reduce Operation

We perform all-reduce by using the communication pattern of all-to-all broadcast. Throughout this discussion, without loss of generality, we assume that addition is the associative operation performed in the all-reduce. An illustration of the all-reduce operation on S_3 is given in Figure [1.](#page-3-1) At each node, the final sum is obtained by adding the content in the result buffer and the outgoing buffer.

Fig. 1. The all-reduce operation on *S*3. At each node, parentheses show the local sum in the outgoing buffer and the contents in the box is the local sum accumulated in the result buffer

All-Reduce

1. each S_{n-1}^i performs All-Reduce recursively; /^{*} At this point, all processors in S_{n-1} have the sum of corresponding numbers to be added. */ 2. each processor in S_{n-1}^i , $i = 1...n$, sends the local sum along the communication link n and saves the local sum in its result buffer; 3. $d = n - 1$; 4. once each processor in S_{n-1}^i receives the local sum from a processor in S_{n-1}^j , where $j \neq i$, it performs the following **while** $d > 2$ **do** send the local sum to a neighbor of S_{n-1}^i along the communication link *d*; add the number received from the processor and the content of the result buffer in S_{n-1}^i ; $d = d - 1$; 5. every processor adds the contents in its result buffer and the outgoing message buffer;

Fig. 2. All-reduce communication operation scheme

Assume that each number in the box, initially in the result buffer, is a number to be added.

An all-reduce operation follows the communication steps of all-to-all broadcast, but adds two numbers instead of concatenating messages. Thus, each message transferred in the all-reduce operation has only one word, where each word hold the partial sum of numbers. At the termination of the all-reduce operation, each node holds the sum $(1 + 2 + ... + n!)$. Figure [3](#page-5-0) shows all-reduce performed in S⁴. The all-reduce scheme **All-Reduce** is shown in Figure [2.](#page-4-0)

Theorem 2. *At the termination of the all-reduce operation, each processor in* S_n *holds the sum* $\sum_{i=1}^{n!} i$.

Proof. The statement is vacuously true when $n = 1$. Let $n > 1$, and assume inductively that when **All-reduce** on S_{n-1} terminates, each processor in S_{n-1} contains the sum of corresponding numbers. When **All-reduce** is called on S_n , **All-reduce** calls itself recursively on each S_{n-1}^i , $i = 1...n$. Since each S_{n-1}^i is
a copy of S_{n-1} by the inductive hypothesis, when each of these recursive calls a copy of S_{n-1} , by the inductive hypothesis, when each of these recursive calls terminates, each processor in S_{n-1}^i , $i=1...n$, holds the sum of corresponding numbers numbers.

From the recursive definition of S_n given in Section [2,](#page-1-0) each S_{n-1}^i is linked
the other S_i^j is in the case of S_n given in Section 2, each space of the contraction link as to the other S_{n-1}^j , $j \neq i$ by exactly $(n-2)!$ links along communication link n.
Thus after the execution of step 2 of **All-reduce** exactly $(n-2)!$ processors in Thus, after the execution of step 2 of **All-reduce**, exactly $(n-2)!$ processors in

Fig. 3. The all-reduce operation on *S*⁴

 S_{n-1}^i holds the sum received from S_{n-1}^j . Also, each processor in S_{n-1}^i has the local sum stored in its result buffer. Now each S_i^i bolds the partial sums such local sum stored in its result buffer. Now, each S_{n-1}^i holds the partial sums such
that adding all partial sums spanks in $\Sigma^{n!}$, i. Let us has a generator in S_i^i and that adding all partial sums results in $\sum_{i=1}^{n!} i$. Let p_1 be a processor in S_{n-1}^i , and let $\sum_{i=1}^{n} i$, enough the processor in S_{n-1}^i , and let \sum_j the partial sum received from S_{n-1}^j . From the above discussion, we know that there are exactly $(n-2)!$ processors in S_{n-1}^i that hold the partial sum \sum_j .
If n_i is one of these processors then we are done. Suppose this is not the case If p_1 is one of these processors then we are done. Suppose this is not the case. Now from step 4 in **All-reduce**, we know that each of these processors will send \sum_j along communication links $n-1, \ldots, 2$, respectively. We first claim that no
noncessary in S^i is the pright on of two distinct presentation and not that hald processor p_1 in S_{n-1}^i is the neighbor of two distinct processors p_2 and p_3 that hold
 \sum at the heginning of step 4. Suppose, for the sake of contradiction, that this \sum_j at the beginning of step 4. Suppose, for the sake of contradiction, that this were not the case. Let $p_1 = \sigma_1 \dots \sigma_n$, and suppose that p_1 is the neighbor of p_2 and p_3 along communication links x and $y \in \{1, \ldots, n-1\}$, respectively. Notice first that $x \neq y$ since a processor is connected to exactly one processor along any given communication link. Since p_1 is connected to p_2 along communication link $x, p_2 = \sigma_x, \ldots, \sigma_1, \ldots, \sigma_n$. Similarly $p_3 = \sigma_y, \ldots, \sigma_1, \ldots, \sigma_n$. Since both p_2 and p_3 have \sum_j , both p_2 and p_3 are connected to S_{n-1}^j along communication link n. Now all processors in S_{n-1}^j have the same *n*th symbol. Since p_2 and p_3 are the neighbors of two processors in S_{n-1}^j along communication link n, it follows that both n₂ and n₂ have the same first symbol and $\sigma = \sigma$, a contradiction since both p_2 and p_3 have the same first symbol and $\sigma_x = \sigma_y$, a contradiction, since σ_x and σ_y are two symbols in the representation of processor p_1 , and hence must be distinct.

Dimension of S_n Size of S_n Tseng [11] Sheu [10] Ours				
3		12		3
4	24	27	12	6
5	120	48	18	10
6	720	75	26	15
	5040	108	34	21
8	40320	127	42	28
9	362880	192	50	36
10	3628800	243	60	45

Table 2. Comparison of all-reduce operations on communication time

It follows from the above claim that the neighbors of the processors possessing the sum \sum_j at the beginning of step 4 of **All-reduce** are distinct. Now each processor that holds \sum_j broadcasts it to exactly $n-2$ neighbors along communication links $n-1$ \sum_j Since all these neighbors are distinct, the number of nication links $n-1,\ldots,2$. Since all these neighbors are distinct, the number of processors in S_{n-1}^i that receive \sum_j from a processor in S_{n-1}^i at the beginning of step 4 is $(n-2)(n-2)!$. Thus, the total number of processors in S_{n-1}^i that hold \sum at the end of **All-reduce** is $(n-2)! + (n-2)(n-2)! - (n-1)!$. It hold \sum_{j} at the end of **All-reduce** is $(n-2)! + (n-2)(n-2)! = (n-1)!$. It follows that all processors in S_{n-1}^i hold \sum_j and in particular p_1 . Since p_1 and j were arbitrarily chosen, every processor in S_{n-1}^i possesses every \sum_j at the end of **All-reduce**, and hence holds the total sum $\sum_{j=1}^{n!} j$.

Theorem 3. All-reduce *performs an all-reduce operation on* S_n *in time* $n(n-$ 1)/2*.*

Proof. The above theorem proves that when the algorithm **All-reduce** terminates, each processor holds the sum $\sum_{i=1}^{n}$ in the system. Let $T(n)$ be the number
of communication steps performed by **All-reduce** on S . Each S^i performs of communication steps performed by **All-reduce** on S_n . Each S_{n-1}^i performs an all-reduce operation within itself and then sends a single message along communication link n, and then along communication links $n-1,\ldots,2$. Thus, the number of communication steps performed by each S_{n-1}^i is $T(n-1) + n - 1$.
Since all the S_i^i since this in parallel, the number of communication steps for Since all the S_{n-1}^i 's do this in parallel, the number of communication steps for S_i is the same as the number of communication steps performed by each S_i^i S_n is the same as the number of communication steps performed by each S_{n-1}^i .
Thus the total number of communication steps performed by each S_i^i . Thus, the total number of communication steps performed by each S_{n-1}^i , and hence by the whole network is given by the recurrence $T(n) - T(n-1) + n-1$ hence, by the whole network is given by the recurrence $T(n) = T(n-1) + n-1$.
It gives $T(n) = n(n-1)/2$. It gives $T(n) = n(n-1)/2$.

5 Concluding Remarks

In this paper we presented an efficient all-reduce communication operation scheme by using the all-to-all broadcast communication pattern. Our scheme performs an all-reduce operation on an n-star network with the single-port capability in $n(n-1)/2$ time steps. If we use an all-to-one reduction followed by a one-to-all

broadcast, an all-reduce can be performed in time $2\sum_{i=2}^{n}([log(i-1)]+1)$ by the proposed in [10] and in time $3(n-1)^2$ by the scheme proposed broadcast scheme proposed in [\[10\]](#page-7-2) and in time $3(n-1)^2$ by the scheme proposed in [\[11\]](#page-7-8). In terms of the communication time shown in Table 2, our algorithm provides an improvement over the algorithms in [\[10,](#page-7-2) [11\]](#page-7-8).

References

- 1. S. B. Akers, D. Harel, and B. Krishnamurthy, "The Star Graph: An Attractive Alternative to The *n*-cube," *Proc. Int'l. Conf. of Parallel Processing*, 1987, pp. 393-400.
- 2. S. B. Akers and B. Krishnamurthy, "The Fault Tolerance of Star Graphs," *Proc. 2nd Int'l. Conf. on Supercomputing*, 1987, pp. 270-276.
- 3. S. G. Akl, K. Qiu, and I. Stojmenovic, "Fundamental Algorithms for The Star and Pancake Interconnection Networks With Applications to Computational Geometry," *Networks*, 1993, vol.23, no. 4, pp. 215-225.
- 4. M. -S. Chen, P. S. Yu, and K. -L. Wu, "Optimal NODUP All-to-All Broadcast Schemes in Distributed Computing Systems," *IEEE Trans. Parallel and Distributed Systems*, 1994, pp. 1275-1284.
- 5. K. Efe and A. Fernandez, "Computational Properties of Mesh Connected Trees: Versatile Architecture for Parallel Computation," *Int'l Conference on Parallel Processing*, 1994, pp. 72-76.
- 6. Intel Corp. iPSC/2 User's Guide, Intel Corp., Mar, 1988.
- 7. I. M. Mkwawa and D. D. Kouvatsos, "An Optimal Neighbourhood Broadcasting Scheme for Star Interconnection Networks," *J. Interconnection Networks*, 2004, vol. 4, pp. 103-112.
- 8. E. Oh and J. Chen, "Strong Fault-Tolerance: Parallel Routing in Star Networks with Faults," *J. Interconnection Networks*, 2003, vol.4, pp. 113-126.
- 9. R. Rabenseifner and P. Adamidis, "Collective Reduction Operation on Cray X1 and Other Platforms," *Proc. the Cray User Group*, 2004
- 10. J. -P. Sheu, C. -T. Wu, and T. -S. Chen, "An Optimal Broadcasting Algorithm Without Message Redundancy in Star Graphs," *IEEE Trans. Parallel and Distributed Systems* 1995, vol.6, no. 6, pp. 653-658.
- 11. Y. -C. Tseng and J. -P. Sheu, "Toward Optimal Broadcast in A Star Graph Using Multiple Spanning Trees," *IEEE Trans. Computers* 1997, vol. 46, pp. 593- 599.