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Abstract. A new mesh smoothing algorithm that can improve quadri-
lateral mesh quality is presented. Poor quality meshes can produce in-
accurate finite element analysis; their improvement is important. The
algorithm improves mesh quality by adjusting the position of the mesh’s
internal nodes based on optimization of a torsion spring system using a
Gauss-Newton-based approach. The approach obtains a reasonably op-
timal location of each internal node by optimizing the spring system’s
objective function. The improvement offered by applying the algorithm
to real meshes is also exhibited and objectively evaluated using suitable
metrics.

1 Introduction

Finite element (FE) analysis acts on mesh elements that are usually generated
by applying mesh generation algorithms. Accurate FE analysis results depend
on the mesh being valid (i.e., having valid elements), having no slivers, and
conforming to the given domain’s boundary. It is also best if the mesh’s density
varies smoothly.

Meshes generated by mesh generation algorithms can often be optimized
with a mesh smoothing algorithm. A smoothing algorithm relocates nodes so
that the mesh will be of a higher quality. Mesh smoothing is usually done in
an iterative process that does not change element connectivity. One popular 2D
mesh smoothing algorithm is the Laplacian Smoothing Algorithm [I]. Lapla-
cian smoothing often produces satisfactory smoothing results. However, it can
sometimes generate meshes with sliver-like elements or with invalid elements.

In this paper, we consider an alternate smoothing algorithm, Zhou and Shi-
mada’s [2] torsion spring-based algorithm, that is better at avoiding generation
of slivers and invalid elements. The Zhou and Shimada algorithm can be im-
plemented easily, but it does not optimally utilize the torsion spring system
it is based on. The new smoothing approach presented here smooths a mesh
of quadrilateral elements in a manner that is provably optimal for the torsion
spring formulation proposed by Zhou and Shimada.

This paper is organized as follows. Section 2] discusses related work. Section
introduces the new algorithm. Section [l presents results and an evaluation of
the algorithm. Section [ presents the conclusion.
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2 Previous Work

A number of mesh smoothing methods for producing acceptable quality meshes
have been presented previously (e.g., [ILBL[4, 56,7, 8] ), including approaches that
minimize a distortion metric (e.g., as in [3]), that disconnect invalid elements
from the remaining mesh (e.g., as in [4]), that solve a generalized linear program-
ming problem (e.g., as in [5]), that combine constrained Laplacian smoothing to-
gether with an optimization-based smoothing algorithm (e.g., as in [1[6]), that
use parallel algorithms (e.g., as in [7]), and that generalize Laplacian smoothing
(e.g., as in [§]). In this section, we describe the Laplacian smoothing and Zhou
and Shimada’s smoothing, which are relevant to our work.

The Laplacian Smoothing Algorithm [9] is an iterative method. It is widely
used due to its relative efficiency and simplicity in application, although it may
generate slivers or invalid elements in some cases. In 2D meshes, the Laplacian
Smoothing Algorithm attempts to improve mesh quality by moving internal
mesh nodes in one or more smoothing passes. In each pass, it moves each internal
node to the centroid (Z,y) of the polygon about the internal node. By polygon
about the internal node, we mean the polygon whose vertices are the nodes
connected to the internal node.

Zhou and Shimada [2] have presented a physically-based mesh smoothing
algorithm. It accomplishes smoothing by moving each internal node to a better
location based on modeling the edges that connect nodes as a torsion spring
system. For a set of nodes connected to an internal node, if the edges that
connect these nodes to the internal node are viewed as a torsion spring system,
then this torsion spring system’s energy can be expressed as:

2(n—1)

1
E= ) gkeﬁ, (1)

=0

where n is the number of nodes that are connected to the internal node by an
edge, k is a constant, and 6; is the angle between a polygon edge and the line
from the internal node to the i-th connected node.

Zhou and Shimada’s algorithm minimizes the energy of the torsion spring
system (i.e., that was shown in Eqn.[I)) and then uses a heuristic to relocate the
interior nodes of the mesh. More detail can be found in [2].

3 Angle-Based Optimization Smoothing

As described earlier, the Laplacian smoothing can generate slivers and invalid
elements. Other mesh smoothing methods, such as optimization-based methods
including the Zhou and Shimada algorithm, can often give better quality meshes
than Laplacian smoothing, especially for meshes that contain badly shaped finite
elements. However, the Zhou and Shimada algorithm uses a non-optimal heuris-
tic. It is possible to instead use an optimization approach to optimally relocate
each internal node. In this section, our optimization approach that accurately
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minimizes the energy of the torsion spring system to produce a well-smoothed
quadrilateral mesh is presented. The approach better-optimizes the new loca-
tions of all internal nodes. The approach is an extension of our earlier work on
triangular meshes [10].

3.1  Objective Function for Optimal Angle

The energy of a torsion spring system model on the edges that connect nodes
is provably minimal when the angle at each vertex is divided by a bisecting
line. However, the bisectional lines for a polygon about an internal node seldom
intersect at the same point. Zhou and Shimada’s heuristic estimates an internal
node’s new location using averaging, which is not optimal. To find the optimal
new location of nodes, our approach uses the following objective function s:

n—1
s= Z[distance(DA’7 L), (2)
i=0
where L; is the bisectional line of the internal angle at node D;, D; is one node of
the polygon about an internal node D, and where D' is the new (i.e., optimized)
position of the internal node.

We can define t = (p,q) as the coordinate of an internal node. Since the
function distance(D’, L;) is a function of the coordinates of an internal node,
the distance can be expressed as a function f; of the coordinate ¢, allowing the
objective function s in Eqn. 2] to be re-written as:

s=Y_ fi(t). (3)

The least squares formulation for an objective function s is:

min  s(t) = 3 [0 5 (1), (4)

where ¢t = (1,t2,...,t,) is a vector with n components, f(t) is a column vector of
m functions f;(t) and f(t)T is the row vector f(t)T = (f1(t), ..., fm(t)).

The formulation of Eqn. E can be solved by any optimization that minimizes
the objective function s(t). When m = n, this problem becomes a set of non-
linear equations in the form f(t) = 0.

3.2 Derivation of Linear Equation System

By taking the derivative of s in Eqn. [ the following equation can be obtained:

Zﬂ%zwf JTS, (5)

using JT = aat .where JT is the transpose of the Jacobi matrix, and using

, T
P= (g—; g—; 3671) . Thus, the Jacobi matrix can be expanded as:



12 H. Xu and T.S. Newman

=1 ] (6)

where J;; = g{f’.
J

To minimize the objective function in Eqn. @ we should have P = 0. By ex-
panding P at point ¢t = t" with a Taylor series that deletes derivatives of second
and above order, we obtain

P(t) = P(t") + or

| -, 7

tTL
Then, substituting P = 0 into Eqn. [, we can obtain

n opP — n
b=t"— (5| )7 PE) (8)
t‘IL
Clearly,
oP|  a(JTf)
ot R )

Deleting the derivatives of second and above order, as is done in Eqn. [1 we
obtain

P
83_15 =J, T, (10)

tn

where J,, is the value of J at t = ¢™.
By substituting Eqns. and [l into Eqn. B, and using t"*! as the next step
value, the following equation can be obtained:

T =1 — (1, T0) T T e (11)
Next, we define
d* = —(Jn" Tn) " 0" fs (12)
which allows Eqn. [[I] to be simplified to
=" 4 dn. (13)

In Eqn. [I3] it is possible to prove that d™ is always negative. Thus, t"* decreases
with increasing n [11]. Although d" can be very small, there are still chances that
a better point exists in the interval [0,d"].To further optimize Eqn. [[3] in the
interval, a scalar A” with domain [0, 1] can be introduced into Eqn. [I3] leading
to the following equation:

L = A, (14)
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Iterative search for a solution ¢ is then used until a specified precision is reached.
In each iteration, a one dimensional search of A\ is made. The solution ¢ can be
substituted into Eqn. [ to find an optimal s, solving the problem.

3.3  Optimization Algorithm

Next, we describe our approach’s use of Gauss-Newton optimization to optimize
the objective function s. Optimization of s requires finding vector ¢t. To solve
Eqn.[3 it is necessary to find the optimal A\™ in Eqn. [[dl Therefore, the following
problem, where only A" is unknown, needs to be solved:

min s(t"™ + \"d"). (15)

To solve this problem, the following steps are used. These steps require the

s(t"+d") —s(t")
s | <€

solution’s precision € to be pre-specified. That is
Step 1. Calculate s(t"™ + d™) and s(¢™).
Step 2. If solution’s € has been reached or it is iteration jy.x, go to Step 8.
Step 3. Set A" = 1.
Step 4. If s(t" + d") < s(t™), set t™ = ¢ + d™ and go to Step 1.
Step 5. Assume s(t" + A"d™) with respect to A" is quadratic and find the co-
efficients of the quadratic polynomial using the values of s at A" = 0,
A™ =1, and the derivative of s at \™ = 0.
Step 6. Find minimum value of s(t™ + A"d"™) for 0 < A" < 1.
Step 7. a. If s(t" 4+ d™) < s(t™), go to Step 1.
b. Set A" = A" /2.
c. Set t™ =t" + A"d™.
d. Go to Step 7a.
Step 8. Stop.

In practice, we have used 10 iterations (jmq. = 10) which has led to reason-
able solutions.

4 Results and Discussion

In this section, the qualitative characteristics and computational results of the
new smoothing algorithm are presented. The algorithm’s characteristics and per-
formance are also compared with the Laplacian smoothing algorithm.

The comparison uses mesh angle and length ratios. An element’s angle ratio
is the ratio of the minimum angle (of the four angles of an element) to the
maximum angle (of the four angles of the same element). The length ratio is the
ratio of an element’s minimum side length to its maximum side length.

Metrics that are derived from the angle and length ratios are used to evaluate
mesh quality. The basic derived metric is the metric ratio. The metric ratio is
the product of the angle ratio and the length ratio.
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The element area is also used to determine quality. The metrics derived from
this measure and used in evaluation are the maximum and minimum element
areas for the whole mesh.

Next, we report experiments that test mesh quality for three scenarios, which
we call Cases 1, 2, and 3.

Shape Improvement. The meshes for the Case 1, 2, and 3 scenarios are shown
in Figure [ (a), (b), and (c), respectively. Figure [I(d), (e), and (f) show the
meshes created by applying Laplacian smoothing to the original mesh. Figure
@(g), (h), and (i) show the meshes created by applying the new smoothing al-
gorithm to the original mesh. In all three cases, the meshes produced by both
Laplacian smoothing and the new smoothing appear to be more uniform in
shape than the original mesh. The mesh quality metrics for the scenarios are
shown in Table [Il In this table, the worst metric ratios of the original mesh,
the mesh generated by Laplacian smoothing, and the mesh generated by the
new smoothing algorithm are shown. The metric values for Laplacian smooth-
ing are all greater than the metric values for the original mesh, which means
that the overall mesh uniformity in shape is improved by Laplacian smooth-
ing. In particular, the larger worst metric value means that the worst elements
are better in the mesh smoothed by the Laplacian algorithm than they are
in the original mesh. The new smoothing algorithm’s worst metric values are
greater than the metric values for Laplacian smoothing in all three cases, which
means that the new algorithm produced a mesh with a less extreme worst
element.
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Fig. 1. Case 1, 2, 3 meshes and results of smoothings on them
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Table 1. Mesh Quality Metrics for Case 1, 2 and 3 Scenario

Metric Name Original Mesh Laplacian New Smoothing
Case 1 Worst metric ratio 0.0017 0.0586 0.0591
Case 2 Worst metric ratio 0.0011 0.0793 0.0912
Case 3 Worst metric ratio 0.0019 0.0111 0.0127

In summary, the new algorithm appears to produce reasonable meshes whose
worst elements are of a much higher quality than in the Laplacian smoothing;
the new algorithm’s worst elements are less sliver-like.

Size Improvement. Minimum and maximum element areas are used to mea-
sure the size uniformity for the quadrilateral meshes produced by Laplacian
smoothing and the new smoothing. Table 2l reports these metrics for the original
mesh, the mesh generated with Laplacian smoothing and the mesh generated
with the new smoothing for the three cases discussed here. With the exception
of the Case 2 scenario minimum area, the new smoothing’s meshs’ minimum
areas are all greater than the minimum areas from Laplacian smoothing. The
maximum areas for the new smoothing are also all less than the maximum areas
from Laplacian smoothing. More importantly, the variation in extreme size is
lowest for the new algorithm. Thus, the meshes generated by the new smoothing
algorithm tend to have less extreme element sizes. While our examples demon-
strate that Laplacian smoothing can improve mesh quality, it can be further
seen that the new smoothing algorithm can generate a mesh with less extreme
variation in element size than does Laplacian smoothing.

Table 2. Mesh Quality Metrics for 3 Scenarios

Original Mesh Laplacian New Smoothing

Case 1 Min. area 0.0251 0.0516 0.0676
Max. area 0.6954 0.4405 0.4125
Case 2 Min. area 2.8810 6.9078 6.8607
Max. area 94.979 50.102 44.036
Case 3 Min. area 0.0141 0.0285 0.0326
Max. area 14.960 14.199 12.967

5 Conclusion

In this paper, a new smoothing algorithm for quadrilateral mesh smoothing has
been presented. The new smoothing algorithm uses an angle-based optimization
method to optimize a torsion spring system. The formulation is set up to optimize
the locations of all internal nodes. The solution is found based on the Gauss-
Newton optimization.
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Here, the new mesh smoothing algorithm’s performance in reducing sliver

elements was also reported. The testing results lead to the following conclusions.
First, the new smoothing algorithm produces better quadrilateral element shapes
than does the Laplacian Smoothing Algorithm. Furthermore, the new algorithm
gives better mesh uniformity than that generated with Laplacian smoothing.
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