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Abstract. The performance of a continuous-time Recursive Least Squares 
(CRLS) and a discrete-time Recursive Least Squares (DRLS) algorithms are 
examined for the growth medium temperature control of a cooling batch 
bioreactor in which Saccharomyces cerevisiae growth at aerobic condition by 
using Continuous-time Generalised Predictive Control (CGPC) algorithm. 
MATLAB programme was utilized for recursive parameter identification 
algorithms (CRLS and DRLS). The success or otherwise of these algorithms are 
estimated using parameter norm criterion for the various order of models and 
several input signals. There is a considerable improvement of identification 
algorithms with the reduced order of models. It has been shown that the 
performance of a DRLS algorithm is as successful as the other recursive 
parameter identification of a continuous-time system model.     

1   Introduction 

In bioprocesses, an organic compound is converted to a valuable product or products 
using enzymes or microorganisms called biocatalysts. Since the biocatalysts are very 
sensitive to changes occuring in their environment it is inevitable to control the 
operating parameters such as temperature, pH, dissolved oxygen concentration and 
substrate concentration for maintenance of optimal conditions for product formation 
in the complex environment in a bioreactor. Temperature is a fundamental parameter 
regulating microorganism growth, kinetics and overall product yield. For this reason 
temperature control systems are an integral part of biochemical processes that regulate 
the quality and the rate at which can be produced. About 40 % to 50 % of the energy 
stored in a carbon and energy source is converted to biological energy (ATP) during 
aerobic metabolism, and the rest of the energy is released as heat. Thus heat evolution 
is directly related to microbial growth [1].  

Batch processes are extensively used to produce specialty chemicals, 
biotechnology, pharmaceutical and agricultural products. S.cerevisiae  microorganism 
which is known as Baker’s yeast is produced by using batch or fed-batch operation 
under aerobic conditions [2]. Although setting up, operating and modeling are 
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available in the literature for batch processes, controlling them is quite challenging. In 
addition,  these processes exhibit time variant dynamic behavior and recharacterized 
by complex, nonlinear physiologial phenomenon that are difficult  to model [3,4]. 
    A model may be obtained by examining the internal structure of the system, 
although it is often the case that a complete picture cannot be achieved due to 
unknown factor, an element which is not directly measurable or an extremely 
complicated process [5]. The class and accuracy of a particular model is dependent on 
its required application. System identification is an effective procedure for the 
modelling of the systems. The model structures must therefore be defined and 
evaluations made of the parameters contained within each models. A certain model 
structure should approximate the system to a chosen degree and contain all the known 
information about operating conditions. It must also be flexible and lead to fast 
parameter estimation procedures [6]. 
     Identification of process parameters for control purposes must often be done using 
discrete-time computation, from samples of input-output observations. On the other 
hand, the process is usually of continuous-time nature, and modelled in terms of 
differential equations. In the previously published literatures, several approaches have 
been developed for the identification of continuous-time model parameters [7,8,9,10].  

The major objective of this study is to identify the recursive parameters of certain 
models in MATLAB for control of the temperature in the growth medium. DRLS  and 
CRLS algorithms are realized for this purpose.  

2   Materials and Method 

Temperature disturbances range was chosen by taking into account the real 
temperature change in the bioreactor during the Saccharomyces cerevisiae growth at 
aerobic condition. Saccharomyces cerevisiae yeast (NRRL Y-567)utilized in this 
study  was obtained from the ARS culture collection (Northern Regional Research 
Center, Peoria, IL, U.S.A.).  Stock cultures were maintained on agar slants containing 
(in g/L): Glucose (20), yeast extract (6), K2HPO4 (3), (NH4)2SO4 (3.35), NaH2PO4  
(3.76),  MgSO4.7H2O  (0.52), CaCl2.4H2O (0.01) and agar (20) (pH 5). The cells 
growing on the newly prepared slants were inoculated in to the same liquid medium 
(without agar) and cultivated at 32 oC for 24 h in an incubator-shaker. 
     The bioreactor given in Fig. 1 was modelled in MATLAB. In this experimental 
system, bioreactor temperature is measured by a thermocouple. A 2 liters bioreactor 
has a cooling jacket. Also sensors were placed in this to measure pH and DO in the 
culture medium. Cooling water was continuously fed into the jacket at changing rates 
as an input type. Agitation was supplied using a turbine impeller at 600 rpm. An 
immersed heater for heating the culture medium to the desired operating temperature 
was also placed in the bioreactor.  Air was supplied to the bioreactor by passing 
through a rotometer and microbiological filter at 1 vvm. 

For on-line data acquisition VISIDAQ package programme was utilized. This 
programming package consists of Task Designer and Display Designer. The on-line 
computer was used in experimental studies. In the theoretical model identification 
work was realized by using MATLAB. 
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Fig. 1. Experimental system 

3   Continuous-Time Recursive Least Squares Estimation (CRLS)  

Continuous-time Generalised Predictive Control (CGPC) was based upon a 
continuous-time system model [11]. To be useful in control applications, the system 
model parameters should be iteratively estimated. For control purposes, a continuous-
time single input-single output system model was utilized to identify the system. The 
model in the laplace domain is then given by  
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Eq. 1 can be rewritten as differential equation; 
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    The value of the parameter is given as 1=na , the estimation process can be given 

as linear in the parameters model;  
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The data vector  includes the derivative of input-output data and thus derivation 
increases the noise, the new data was obtained by filtering the data vector with a 
polynomial. For this purpose, Y(s) was added to (Eq. 1) and than this equation 
divided by T(s) polynomial. The rearrange equation was given as follows:  
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where the conditions are deg(T)≥deg(A) and 1=na . The rearranged linear model 

with the parameters is given as 

)()()( sssY T
f εθφ +=                                              (7) 

the new parameter and data vectors are given below respectively; 
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As it is accepted that the parameter estimation vector at time t are given in (Eq. 4), 
the estimated output and the prediction error are given in (Eq. 10 and 11) respectively.  
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    The aim is to choose the current estimate )t(θ̂ such that thus error is minimum 

over the range t≤≤ τ0 . Least squares estimation method considers a cost function 
of the following form to achieve this objective. The cost function for CRLS algorithm 
is defined as [12];  
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     Where ,0c ≥β  initial information matrix ( oS ) is a possitive definite symmetric 

matrix, )t(ˆ
oθ is the initial estimate of  θ . The first term is the cost allow us to 

include a prior estimate in the algorithm. The second brings in the measured data into 
the criterion. cβ  is the forgetting factor. As time t increases, the effect of old data at 

time t〈τ is discounted exponentially with the elapsed time τ−t .  

     The main equations for CRLS algorithm are given as; 
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In the present work, it is noted that by filtering input-output data with a certain 
polynomial, the DRLS algorithm can also be used for continuous-time model 
parameters. The main equation for this method were given in the previously published 
work [13,14].  

4   Results and Discussion 

A CRLS algorithm with MATLAB programme was utilized for recursive parameter 
identification of a continuous-time system model. A DRLS algorithm was also used 
succesfully for the same purpose. Performance of the both identification algorithm 
with the estimated models of the system given in Table 1 were investigated 
theoretically for square wave input signal. These results were given in (Fig. 2-5).  
 

Table 1. Continuous-time models for examining the DRLS and CRLS algorithms 
 

 
 
Affects of model order on performance criteria, parameter error norm ( θθθ /ˆ− ), 

were investigated. It is noted that increasing model order reduces the performance of 
the both CRLS and DRLS algorithms (Table 2).        
    The important parameters of the CRLS and DRLS algorithms such as initial 
parameter vector, covariance matrix, information matrix, forgetting factor and 
sampling period were determined by using trial and error method. Their values are 
given 0, 10000, 0.0000001, 0.99, 0.1 respectively.  

It is noted that as a new approach, discrete-time identification algorithm can be 
used acceptably for evaluation of a continuous-time model parameters. When the 
certain values of the parameter such as forgetting factor, filter polynomial etc., which 
affect the identification performances was choosen most effectively, the widely used 
DRLS algorithm in previously published work has been used successfully for 
continuous-time model identification. 
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Fig. 2. DRLS identification with Model 1      Fig. 3. DRLS identification with Model 2    
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Fig. 4. CRLS identification with Model 1        Fig. 5. CRLS identification with Model 2    

 
The results of parameter identification in CRLS and DRLS for Model 1and several 

input signals are shown in Fig. 6-9. It is noted that the performance of a CRLS 
algorithm was more successfull than the performance of a DRLS algorithm (Table 2 
and 3). 
 

Table 2. Identification performance of DRLS and CRLS for the square wave input 
 

Algorithm Model Parameter error norm 
Model 1 0.0109 

DRLS 
Model 2 0.4110 
Model 1 0.0081 

CRLS 
Model 2 0.2896 
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Fig. 6. DRLS identification with Model 1       Fig. 7. DRLS identification with Model 1    
and ternary input       and PRBS input  

 

0 100 200 300 400 500 600

in
pu

t

0

2

4

6

8

10
0 100 200 300 400 500 600

ou
tp

ut

0

5

10

15

20

25

30

time step

0 100 200 300 400 500 600

pa
ra

m
et

er
s

-4

-2

0

2

4

yp
y 

a1 
b0

0 50 100 150 200

in
pu

t

2

4

6

8

10
0 50 100 150 200

ou
tp

ut

0

5

10

15

20

25

30

time step

0 50 100 150 200

pa
ra

m
et

er
s

-4

-2

0

2

4

yp
y 

a1 
b0 

 

Fig. 8. CRLS identification with Model 1         Fig. 9. CRLS identification with Model 1    
and ternary input         and PRBS input  
 

Table 3. Identification performance of DRLS and CRLS for various input type 

Algorithm Model Input  signal Parameter error norm 
Square wave 0.0109 

PRBS 0.1936 DRLS Model 1 
Ternary 0.0066 

Square wave 0.0081 
PRBS 0.0588 CRLS Model 1 

Ternary 0.0080 
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Nomenclature 

e   Noise 
u, U  Input 
y,Y  Actual output 

ŷ   Predicted output 

Greek Letters  
θ   Actual parameter vector 

θ̂   Estimated parameter vector 
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