On Iterated Numerical Integration

Shujun Li, Elise de Doncker, and Karlis Kaugars

Computer Science,
Western Michigan University
{sli, elise, kkaugars}@cs.wmich.edu
http://www.cs.wmich.edu/~parint

Abstract. We revisit the iterated numerical integration method and
show that it is extremely efficient in solving certain classes of prob-
lems. A multidimensional integral can be approximated by a combination
of lower-dimensional or one-dimensional adaptive methods iteratively.
When an integrand contains sharp ridges which are not parallel with
any axis, iterated methods often outperform adaptive cubature methods
in low dimensions. We use examples to support our analysis.

1 Introduction

We will call an integration method iterated, if lower-dimensional methods are
used for the integration in different coordinate directions [I8[IT]. We use an
adaptive method from QuadPack [14] to compute the one-dimensional integrals
in an iterated method. The work of [Bl[6] shows that the iterated method is
much more efficient in integrating certain Feynman loop integrals of particle
physics. As an example, one of the three-dimensional integrands has a singular
behavior located within three narrow adjacent layers of the integration domain.
The function has large positive values in the outer two and is negative in the
middle layer.

Further study reveals that limitations of the machine precision prevent us
from achieving better results for some problems. When a specific integrand pa-
rameter becomes small, increasing the function evaluation limit does not lead to
a better result. Even when this parameter is not very small, setting the function
evaluation limit to a large value results in unnecessary function evaluations and
possibly a less accurate result.

Iterated methods deserve a thorough investigation. A prototype implementa-
tion is underway for PARINT [16]. After modifying the one-dimensional methods
in PARINT to handle discontinuities, the integrals of the Dice functions (see Sec-
tion M below) can be approximated to an accuracy that is limited only by the
machine precision.

2 Iterated Method

We will use one-dimensional integration methods iteratively to compute an n-
dimensional (n > 2) integral numerically.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 123-[I30} 2005.
© Springer-Verlag Berlin Heidelberg 2005

http://www.cs.wmich.edu/~parint

124 S. Li, E. de Doncker, and K. Kaugars

The integral of an n-dimensional scalar function f(x1, xa, ..., x,) over a hyper-
rectangular region D in R" is

I:/ flay,xo, ...y xy) deidas...dxy, (1)
D
which is the same as
ay
I :/ dxy fz1, 29, oy zp) das...dxy,. (2)
¢ D’
Let
F(xy) = [f(21,22,....20) dza...dzp, (3)
DI

then integral (2]) becomes

I= /:ll’ F(z1) dzxq, (4)

a
1

which is a one-dimensional integral. We then start from formula (), and repeat
the process in the remaining coordinate directions.

We found that the iterated method outperforms other methods significantly
for a class of problems with steep, narrow ridges for 2D functions, or similar
behavior in higher dimensions.

3 Implementation

We can use a one-dimensional integration method to compute an approximation
for integral (). The code in this method will evaluate F(z1) for a given value
of 1 by calling an integration method. The calls are done recursively in the
following pseudo-code. The pseudo-code below uses a C-like syntax.

Iterated Method:

n <-- dimension

lower <-- array for lower bounds

upper <-- array for upper bounds

xx <-- temporary array of size n for a point

main() {
a <-- lower[1]
b <-- upper[1]
i<-—-1
integrate(foo, i, a, b, result, error)
print(error, result)

On Iterated Numerical Integration 125

foo(n, i, x_i, fcn_value) {

if i = n then
integrand(n, x_i, fcn_value)

else
xx[i] = x_i
a <-- lower[i+1]
b <-- upper[i+1]
i<—-1i+1
integrate(foo, i, a, b, result, error)
fcn_value <-- result;

}

integrand(n, x_i, fcn_value) {
xx[n] <-—- x_i
fcn_value <-- f(xx)

}

The actual code differs from the pseudo-code significantly. It is also more
complex. In the pseudo-code n, lower, upper and xx are global variables. foo is
part of the package. The driver function main and the integrand function are
given by the user. The end users do not need to know how the iterated method is
implemented. integrate is a one-dimensional adaptive method. Any combination
of the directions will be implemented in a future release of PARINT [I6]. For
example, a one-dimensional method in the z direction can call a two-dimensional
method in the y and z directions.

Iterated integration methods were implemented in FORTRAN for the compu-
tations of [5,6]. Other implementations include DO1DAF in NAG (a FORTRAN
subroutine for two-dimensional iterated numerical integration) [I§]. According to
its documentation, DO1DAF is not well-suited for non-smooth integrands. Two-
dimensional iterated numerical integration is also explained in [1I] and [I4].

For a given total error tolerance, selecting the error tolerances of the inner
integrals is non-trivial. Currently we use the same relative error tolerance for all
levels. The contribution of the inner and outer integration errors and a heuristic
estimation of the total error are outlined in [T1], where it is suggested that, for a
two-dimensional iterated method, the inner integral be computed about a factor
of ten more accurately than the outer. If the total absolute error tolerance is
€q, then €9 = 0.9¢, and el, = To@ar g+ The total estimate error is given by
erroro + (28 — r3) max,, errorr(z;), where errorg is the estimated error of the
outer integral, and error;(z;) is that of the inner for a given value z; of x..

Fritsch, Kahaner and Lyness [7] study the error tolerance assignment in a
two-dimensional iterated method. The total absolute error tolerance, eX' = 9 +
el where €2 and el are the absolute error tolerances for the outer and the
inner integrations, respectively. For m-panel ((m + 1)-point) closed Newton-
mo+2

. The authors discuss the assignment
mi4+2

of el for the inner integrations. One way is to use a constant error tolerance £!,
for all points x; in the x direction. Another way is to have l,|W;| = constant,

where W; is the weight assigned at the first appearance of F(x;). The former is

I
. . . €

Cotes rules, an optimal ratio is & =
a

126 S. Li, E. de Doncker, and K. Kaugars

intended for situations where the function has no peaks or untoward behavior,
while the latter assignment will apply if the function is well behaved over most
of its domain but has peaks or oscillations in a small portion of the domain.

4 Performance Analysis

Let us address the performance of the iterated method using two sample integrals
from [17], which we refer to as DICE1 and DICE2 below.

2ey
Dicel d d
o / x/ Yoty—12+e

ey?0(1 — 2% —y?)
Dice2 /_1d:v/ m2+y T 4 e
Here 6(t) = 1 for t > 0, and 0 otherwise. The DICE] integrand has a ridge of
height %y along the diagonal y = 1 — x. The DICE2 function has a ridge along
the circle of radius b centered at the origin, and a discontinuity at the unit
circle.

Two-dimensional adaptive cubature methods are not very effective for com-
puting these integrals, which mimic the behavior of certain integration prob-
lems arising in high-energy physics computations. Results are given in [4] for
b=10.8, e =10"1,10"2,...,1075, a relative error tolerance of 10~ and a func-
tion evaluation limit of 250 million.

In order to show the behavior of the DICE2 integrand aggregated in the
y direction, we graph the inner integral F(z) in Figure [(Left) and (Right)
for e = 107! and 1074, respectively. It emerges that these are rather smooth
functions of z. Consequently, the integral in = can be carried out easily and
only a moderate number of subdivisions in the z direction is carried out for
the iterated integration. This is also true in the y-direction, if the x direction is
aggregated first.

Figure 2l (Left) and (Right) displays visualizations of the function values eval-
uated by the adaptive cubature and by the iterated method, respectively, for
DicEl. We use the (parallel) cubature methods in PARINT, based on the inte-
gration rules of Genz and Malik [9L[T].

For the adaptive cubature, subdivision is performed in a 2D surface. For the
iterated method, subdivision is mainly done along the y axis. This behavior is
also confirmed by the views of F'(z) for DICE2 in Figure [(Left) and (Right).
In spite of the ridges on the two-dimensional domains, the functions aggregated
to one dimension depict a relatively smooth behavior. Thus the outer integral is
easy to calculate.

Let us furthermore examine the function evaluation count. As a rough esti-
mate, the number of function evaluations of the two-dimensional adaptive cuba-
ture method is about the square of that of the iterated method for the problems
under consideration.

The adaptive cubature method chooses a direction to bisect a region so that
the subsequent computation becomes easier on the subregions. If the ridges are

On Iterated Numerical Integration 127
+ Function View x + Function View x
File File
])

Fig. 1. F(z) of the DICE2 function, where Left: ¢ = 0.1, and Right: ¢ = 0.0001

v Function View

v Function View

File

)

File

)

Fig. 2. Left: Adaptive cubature method for DICE1, where b = 0.8 and € = 0.1; Right:
Iterated method for DiCE1. This image has been rotated for a better view

parallel to one of the axes, the advantage of the iterated method disappears.
We removed y in the numerator of the DICEL integrand and rotated it with
respect to the point (0.5,0.5). We performed numerical integration for a variety
of angles between the ridge and the z axis, with ¢ = 0.01 and a relative error
tolerance of 10710, Figure [l illustrates the relationship between the ridge angle
and the number of function evaluations performed. When the ridge is parallel to

128

S. Li, E. de Doncker, and K. Kaugars

7x10° 1
6x10°
5x10°
4x10° 1
3x10°

2x10° 1

Function evaluations

1x10°
0

lterated
2D adaptive

0

w4

e e e T T
10 15 20 25 30

- - - = - - | - ?
35 40
Angle between the ridge and x axis

- i
T

45 50

Fig. 3. The relationship between number of function evaluations and ridge orientation

the z axis, the number of function evaluations is 5355 for the adaptive cubature
method, which is close to that of the iterated method (6,975). When the ridge is
along the diagonal, 6,621,069 evaluations are needed, which is almost the square

of the former.

To generate the function visualizations we used AdaptView [12], which uti-
lizes adaptive numerical integration to visualize the integrand function.

Iterated methods are able to produce end-results with a very small estimated
error for the problems discussed above. In order to avoid early termination,

+ Function View =

FEile

I

‘ |||l|h- A

Fig. 4. Visualization of the DICE2 integrand, where b = 0.8, ¢ = 10~ % and the absolute

error tolerance is 107

On Iterated Numerical Integration 129

especially in cases where the ridges are extremely narrow, the error tolerance
should be set small enough, so that the singularities are “discovered” before
the computation is trapped in unstable areas or the error estimate has met the
requirement. Figure M illustrates this effect. For a fixed value of x, the (inner)
one-dimensional integration is done in the y variable. When a peak is not sampled
by the integration rule, some regions may have an under-estimated error, and
will not be evaluated again.

5 Conclusions and Future Work

We demonstrated that the iterated method is extremely fast for an important
class of problems with ridged integrand behavior. If the integrand function has
only a limited number of singular points (i.e., a localized singular behavior), or
if the singular ridge is parallel to one of the axes, adaptive method are usually
effective. We plan to investigate loop integrals of fairly low dimensions (less than
6, for example) [151[6]52L8[3] using iterated methods. Note that some methods
involving multi-dimensional integrals reduce to the computation of many two-
and three-dimensional integrals as in [3].

It is feasible to compute many two- and three-dimensional integrals numeri-
cally to produce a reasonably small error, because a thousand of function eval-
uations in one direction can often achieve decent accuracy. Even if the total
evaluation count is a billion for, say, a three-dimensional problem, that may not
be a real obstacle for even a desktop computer today. We do need to make use
of reasonable summation methods [10].

Iterated integration yields a good candidate for parallel /distributed integra-
tion methods in view of the large granularity of the inner integral evaluations.
We performed preliminary tests on distributed computations with with a Web
service based integration system, PI service [13].

Acknowledgment

This work is supported in part by Western Michigan University, and by the
National Science Foundation under grants ACI-0000442, ACI-0203776 and EIA-
0130857.

References

1. BERNTSEN, J., EspELID, T. O., AND GENZ, A. Algorithm 698: DCUHRE-
an adaptive multidimensional integration routine for a vector of integrals.
ACM Trans. Math. Softw. 17 (1991), 452-456. Available from http:
//www.sci.wsu.edu/math /faculty/genz/homepage.

2. BinoTH, T., AND HEINRICH, G. An automized algorithm to compute infrared
divergent multi-loop integrals. hep-ph/0004013 v2.

3. BiNOoTH, T., HEINRICH, G., AND KAUER, N. A numerical evaluation of the scalar
hexagon integral in the physical region. hep-ph/0210023.

130

10.

11.

12.

13.

14.

15.

16.
17.

18.

S. Li, E. de Doncker, and K. Kaugars

DE DONCKER, E., KaucArs, K., Cucos, L., AND ZANNY, R. Current status of
the ParInt package for parallel multivariate integration. In Proc. of Computational
Particle Physics Symposium (CPP 2001) (2001), pp. 110-119.

DE DONCKER, E., SHiMIZU, Y., FuiiMOoTO, J., AND YUASA, F. Computation of
loop integrals using extrapolation. Computer Physics Communications 159 (2004),
145-156.

DE DONCKER, E., SHimizu, Y., Fuisimoro, J., Yuasa, F., Cucos, L., AND
VAN VOORST, J. Loop integration results using numerical extrapolation for a
non-scalar integral. Nuclear Instruments and Methods in Physics Research Section
A 539 (2004), 269-273. hep-ph/0405098.

FriTscH, F. N., KAHANER, D. K., AND LyNESS, J. N. Double integration using
one-dimensional adaptive quadrature routines: A software interface problem. ACM
Trans. Math. Softw. 7, 1 (1981), 46-75.

Fuisimoro, J., SHimIzU, Y., KATO, K., AND OYANAGI, Y. Numerical approach
to one-loop integrals. Progress of Theoretical Physics 87, 5 (1992), 1233-1247.
GENZ, A. MVNDST Mult. Normal Dist. software, 1998. Available from web page
at http: //www.sci.wsu.edu/math/faculty/genz/homepage.

KAHAN, W. Further remarks on reducing truncation errors. Comm. ACM 8 (1965),
40.

KAHANER, D., MOLER, C., AND NAsH, S. Numerical Methods and Software.
Prentice Hall, 1989.

L1, S., KauGArs, K., AND DE DONCKER, E. Grid-based distributed function
visualization.

L1, S., KAUGARS, K., AND DE DONCKER, E. Massive scale distributed integration
using Web service. In The Hawaii International Conference on Computer Sciences
(2003). CDROM Proceedings.

Piessens, R., DE DONCKER, E., UBERHUBER, C. W., AND KAHANER, D. K.
QUADPACK, A Subroutine Package for Automatic Integration. Springer Series in
Computational Mathematics. Springer-Verlag, 1983.

SoN, D. H. Feynman Loop Integrals and their automatic Computer-aided Fvalua-
tion. PhD dissertation, Johannes Gutenberg-Universitat Mainz, June 2003.
PARINT GROUP. http://www.cs.wmich.edu/parint, PARINT web site.
ToBIMATSU, K., AND KAWABATA, S. Multi-dimensional integration routine DICE.
Tech. Rep. 85, Kogakuin University, 1998.

UBERHUBER, C. Numerical Computation 2 - Methods, Software, and Analysis.
Springer-Verlag, 1997.

	Introduction
	Iterated Method
	Implementation
	Performance Analysis
	Conclusions and Future Work

