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Abstract. A k-order Recursive Quadratic learning algorithm is pro-
posed and its features are described in detail in this paper. Simulations
are carried out to illustrate the efficiency and effectiveness of this new
algorithm by comparing the results with both the projection algorithm
and the conventional least squares algorithm.

1 Introduction

The Least Squares (LS) algorithm [3] and its adaptive version Recursive Least
Squares (RLS) algorithm [2] are well-known algorithms widely used in areas
such as Data Compression [8], Neural Network [5], Parameter identification [10],
Pattern Recognition [4], Graphics [7], and Gene/DNA studies[9]. RLS is of-
ten used in linear-in-the-parameter (LIP) models. However, some undesirable
features of RLS algorithm are that the regression matrix should be of full
rank, convergence slows down considerably at certain low level error, and it
persists over a considerable number of iteration steps before dropping even-
tually below the prescribed error bound. This is due to the fact that at low
error level, RLS algorithm takes very small step sizes to ensure the
convergence.

This paper develops a high-order Recursive Quadratic (RQ for short) learn-
ing algorithm, initially proposed in [I1], which avoids the problem of RLS for
identifying a general class of linear and nonlinear LIP models. RQ algorithm is
thoroughly investigated and we reveal its features as a high-order extension of
the Projection algorithm with a quadratic cost function. The convergence and
accuracy analysis of the algorithm is performed along with the simulations to
demonstrate various specialized properties of the algorithm.
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2 The RQ Algorithm

2.1 Preliminaries

The Linear-in-the-Parameters (LIP) is one of the most widely used model struc-
tures with the following general form [12]:

y(t) = &lz(t)or = 7 ((t)6" (1)
=1

where {z(t),y(t)}(t > 0) is a set of sample data, 6* = [w1,...,w;,...]T is the
desired weight, and ¢(z(t)) = [&1(z(2)), ..., &(2(t)),...]T is an m-vector of basis
functions.

We define a kt-dimensional matrix A; to be the system forgetting factor:

A= {8%1) 91(/@, k)] @)

where A(kt, k) is a k-dimensional diagonal matrix A(kt, k) = diag[\i, ..., A\g] and
Ai (i =1,2,...,k) are some positive real scalars. The constant k is the order of
the algorithm.

2.2 RQ Learning Algorithm for LIP Models

For a particular k, we define the abbreviated notations of input matrix, output
vector, and output error vector as follows:

By = Py(kt, k) = [@e(w(k(t — 1) + 1)), @e(a(k(t — 1) +2)), oy e (x(k(t—1)+K))) T
(3)

Yi = Yi(kt, k) 2 [ye(k(t — 1) + 1), g (k(t — 1) +2), o ye (bt — 1) + F)]” @

B, = E,(kt, k) 2 Y, (kt, k) — &, (kt, k)0,_,
= [ei(k(t —1) +1),ei(k(t —1) +2),.,er(k(t — 1) + k)" (5)

where e, (kt) = y;(kt) — T (x(kt))f;_1, subscript ¢ denotes that the parameters
are estimated at time t¢. Introduce J; to be the quadratic function:

1 1 . )
Jy = Jy(kt k) = EEtTA(kL k)E; = 5(}@ — &0, )T Akt k) (Y, — D,0;_1)

= %é;{l@f/l(kt, k)®.0,_y — 07 | dT A(kt, k)Y, + %Y;TA(kt, k)Y,

= %éthPtét—l - éthQt + %Rt (6)
where A(kt,k) is a k-dimensional identity matrix if we select \; = 1(Vi =
1,2,....k), and

P, = P(kt, k) 2 &7 (kt, k) A(kt, k)&, (kt, k) = BT d,

Q= Qu(kt. k) £ @] (kt, k) Akt W)Y (kt, }) = 2]V,

2

Ry = Ry(kt, k) = YT (kt, k) A(kt, k)Y (kt, k) = Y,TY;
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Using the above notations we can introduce the k-order RQ algorithm as
follows:

. ) J(Q, — P,6,_
0 ==0_1+ < t(C?t 101-1) - (7)

B+ (Qt — Piby—1)T(Qr — Pib—1)

where t =1,2,..;and >0 ,0 < a < 4.

Theorem 1. The algorithm (7)) is obtained by solving the followmg optimization
problem: Given 0,_, and Y, determine 0, so that Jg=3 ||9,5—9t 1]|? is minimized
subject to

(Ve — o0 1)"Yy = (Vi — By 1) 7 0, (8)
Proof. Introducing a Lagrange multiplier A for the constraint (), we have the
augmented function as Jé = %Hét — HAt,1||2 + 2)\[Y; — @tét,l]T[Yt — @tét}. The

necessary conditions for an optimization are 9.J; /90, = 0 and OJ; /0N =
which are

Oy — 0,1 — 2XBT [V, — D40, _1] =0 (9)
[V; — @0, 1]T [V — ®40;] = 0 (10)

From (@) we obtain 0, =0, | + 2001y, — @tét—ﬂ, substituting into ([I0]) gives

o 3= 2] Y - @6, ] an
Vi = @40, ] T BT [Yy — 216y 1]

And we have &7 (Y; — @tét_l) =oTE, = Q; — Ptét_l, then substituting this as
well as (@), (@), and ([II) into @) gives

2J:(Q: — Pif; 1)
(Qt - Ptétfl)T(Qt - Ptétfl)

To avoid division by zero, a small constant 3 is added to the denominator of
the above formula. In order to adjust the convergence rate of the algorithm,
we multiply a constant « to the numerator of the algorithm that erases the
constant 2. This leads to the slightly modified form (7)) of the new high-order
RQ algorithm. O

ét = étq +

Figure [ illustrates the geometric interpretation of the RQ algorithm with
parameter of two dimensions 6 = (6 61) and the order k = 4. The parameters
0y and 61 span a plane if they are linearly independent. The input matrix ¢; =
{pt1, Pr2, 13, pra} and each vector ¢ has two dimensions. Through Figure [ we
know that 6, is convergent to the desired parameter value 6* using the shortest
path, and it eventually reaches 6*, i.e., ||ét — 0,4 || is minimized by RQ learning
algorithm.
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6,

6,

Fig. 1. Geometric interpretation of the Recursive Quadratic learning algorithm

2.3 Properties of RQ Learning Algorithm

Lemma 1 provides the convergent assessment of the RQ algorithm.
Lemma 1. For any given initial value éo, (@ has the following properties:
(i)

| 60— 6% <] By — 0% < - <I| fo — 0" | for any t > 1.

t—o0o
(i)
limy o0 || 0; — 0, ||= 0 for any finite positive integer s.

Proof. The complete proof is given in [11].
In Lemma 2, we consider the k-order RQ algorithm in the presence of a

Gaussian noise.
Lemma 2. Modify the system model () into :
Yo =91 0"+ w, (12)

wy is a sequence of Gaussian noise, so that limy .o, E[w;] = 0 and lim;_. o, E[w?] =
o?. Define the k-order noise vector W 2 [(Wh(t—1)4+1> Wr(t—1)+25 ...,wk(t_1)+k]T
then the RQ algorithm in () has the following properties:

)

(i) The output error converges in the mean

tlim Ele:] =0
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(i)

tlim Elele;] = o*
Proof. (i)
e =y — @1 01 = —0f 01 + wy
Then

tlim Eles] = tlim E[—QOtétfl + wy]
= — lim E[g,] lim El0,_1] + Jlim Bfw]

As wy is white noise, lim;_, o, E[w;] = 0, with the parameter ét being unbiased
and the parameter error converging to zero, i.e. lim;_, o, ét_l = hmtéoo(ét_l -
0*) =0, then lim;_,o Ele;] = 0.

To prove (ii), we observe first that

kt

Z e? = EFEy = (Y — 0:0,1)" (Y, — $10;_1)
i=k(t—1)+1

= (_ététfl + Wt)T(_Qtétfl + W)
=00\ & 0,1 — 07 D[ W, — W] D0,y + WIW,
The covariance estimate of the output error is:

lim E[E'E;] = hm EOL o730, 1] - hm E6L o7 lim E[Wy]

t—o0

— lim E[W]] hm E[@th_l] + thm EWIwW]

t—o0o

As the vector Wy is composed of a sequence of white noise w;, we can conclude
that lim; .o E[W}] = 0y is a k-order zero vector, and lim; .o £ (WIW,] = ko?.
Since lim;_.o, 0;—1 = 0, and hmtﬂoo{Ht &F .0, 1} is a scalar, we have

hm E[Gt 1@ @th 1] = hm E[t’f’{g 1@ thet 1}]
hm E[tr{@ 19,5 1 DT D}
= lim tr{E[0 o 0, | E[®Id,}] =0
Therefore
Jlim E[E{ E;] = lim Z Ele?] = ko?
i=k(t—1)+1

Finally
2

lim Ele?] = o

t—o0
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Lemma 2 allows us to conclude that () converges under the white noisy data
as well. O

Lemma 3. When k = 1, the new Ist-order RQ learning algorithm is equivalent
to the Projection algorithm in [I].

ét = ét—l + /Bfiiégbt[yt - dj?ét—l] (13)

Proof. When k = 1, the 1st-order RQ learning algorithm becomes:

/.2
eyt

m(yt — ¢ Bi_1) (14)

ét = étfl +

wheret >0,0>0,0<da = %a <2,and e; = y; — gp?ét_l.

Since [ can be chosen as any positive number for preventing the denominator
to be zero, selecting 3’ = 3/e?, ([d) can be interpreted in terms of (I3]). Thus,
the Projection algorithm is a special case of the new RQ learning algorithm when
we choose a set of specific parameters. O

3 Simulations

In this section, we present an example L] to assess the computational features of
the RQ algorithm. We provide the performance comparisons among the k-order
RQ learning algorithm, the projection algorithm, and the conventional Recursive
Least Squares algorithm as well as the data statistics.

Example. The moving average (MA) model

Yy = bsinx; — 1 cos xtewtilo + 2In(xy + 10) + wy

where t = 1,6,11,...,101 and w; is a sequence of Gaussian noise with variance
0.01, m = 3 is the number of basis functions.

Figure [2] show the parameters convergence using 21 input and output data
for identifying the system for £k = 15, where k is the order of the RQ learning
algorithm. With the choice of k, the number of multiplications (NM) is 3m? +
4m-~+km?2+km+k+3 and the number of additions (NA) is m? +m-+m?k+mk-+k.

These results are also compared to the Projection algorithm (I3)) and the
RLS algorithm in [6]. For the Projection algorithm, the NM is 3m + 1 and NA
is 3m — 1 per iteration step. For RLS algorithm, the NM is 6m? 4+ 3m + 2 and
NA is 5m? — m. We choose the same initial parameter value b = [0,0,0]7 and
the same error bound (3 x 107%) for all the three algorithms.

! Limit to space, we just show one example here. However, we have done many simu-
lations for all kinds of LIP models
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k=15 parameter

Parameter Values

L L L L
[ 5 10 15 20 25 30
Iteration Steps

Fig. 2. When k = 15, RQ algorithm converges to 3 x 10™% in 28 steps

The Projection algorithm can reach the error bound with 2339 iteration steps,
its convergence rate is the slowest. The RLS algorithm converges faster than the
Projection algorithm with 1387 iteration steps. However, after the initial fast
convergence, the step length of the algorithm changes to be very small at low
error level to avoid the convergence to the wrong parameter values.

The k-order RQ learning algorithm, on the other hand, can reach the error
bound in only 28 iterations with & = 15. This shows that the speed of convergence
of the k-order RQ learning algorithm is much faster than both the RLS algorithm
and the Projection algorithm. Counting the total number of multiplications,
additions and CPU time needed for the convergence, the RQ algorithm are 6636,
5796 and 1.43 seconds respectively, which are much less than RLS algorithm
(90155 for NM, 58254 for NA and 22.57 seconds for CPU time) and Projection
algorithm (23390 for NM, 18712 for NA and 71.70 seconds for CPU time).

We also observe that the choice of the order k is very critical. As shown in
the Figure [3 if & is chosen to be large, then the convergence is fast but the

The Number of Convergence steps

24"

k=21

s 20 25 log

The NM in every step

Fig. 3. Relationship between the steps and NM (both axes are scaled logarithmically)
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computation at each iteration step is quite intensive. When k is too large, the
convergence slows down again, at the same time, the NM and NA are very high.
On the other hand, if % is chosen to be too small, then the computation is much
simpler at each step, but it has much slower convergence. In this example, k
around point A is the optimal choice, both the NM for each step and the total
number of convergence steps are low. Currently the choice of k is based largely
on intuitions rather than analytical means.

4 Conclusion

In this paper, we have developed a new high-order Recursive Quadratic (RQ)
learning algorithm for Linear-in-the-Parameter models. This new RQ learning
algorithm is derived as a high-order extension of the Projection algorithm with a
new form of quadratic cost function. RQ algorithm is thoroughly described along
with complete investigations to reveal its various features. The convergence and
accuracy analysis of the algorithm is performed along with the simulations to
demonstrate various specialized properties of the RQ algorithm.

We only developed the high-order RQ learning algorithm by choosing a spe-
cific A; in this paper. One future research is to explore the learning algorithm by
choosing different kinds of matrix A;. In our research, choosing an appropriate
order k is very critical. The larger the order, the faster the convergent speed
and the more complex the computation at very iteration step. Hence, in future
research it is very important that how can we choose a proper order k such
that the convergent speed is reasonably fast, and yet the computation at every
iteration step is reasonably simple in practice. Moreover, we can also extend the
RQ learning algorithm for the purpose of on-line identification.
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