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Abstract. Named Entity Recognition (NER) from biomedical literature
is crucial in biomedical knowledge base automation. In this paper, both
empirical rule and statistical approaches to protein entity recognition
are presented and investigated on a general corpus GENIA 3.02p and
a new domain-specific corpus SRC. Experimental results show the rules
derived from SRC are useful though they are simpler and more general
than the one used by other rule-based approaches. Meanwhile, a concise
HMM-based model with rich set of features is presented and proved to
be robust and competitive while comparing it to other successful hybrid
models. Besides, the resolution of coordination variants common in enti-
ties recognition is addressed. By applying heuristic rules and clustering
strategy, the presented resolver is proved to be feasible.

1 Introduction

Nowadays efficient automation of biomedical knowledge bases is urgently de-
manded to cope with the proliferation of biomedical researches. One crucial task
involved in the automation is named entity recognition (NER) from biomedical
literature. Similar to the recognition in general domains, the issues associated
with biomedical entity recognition are open vocabulary, synonyms, boundaries
and sense disambiguation. For example, the number of entries in SwissProt1, a
protein knowledge base, increases 277.36% in recent ten years. Each protein en-
tity contains 2.54 synonyms in average, and each synonym contains 2.74 tokens
in average.

Recent textual mining approaches useful to biomedical NER can be divided
into rule-based, statistical and hybrid methods. Generally, rule-based approaches
employ the information of terms and hand-craft rules to produce candidates
which are then verified by using lexical analysis [1, 2, 5]. Yet rule-based meth-
ods require more domain knowledge and essentially lack of scalability. On the
other hand, statistical models have been widely employed for their portability
and scalability, such as Hidden Markov Model (HMM), Support Vector Model
(SVM), Maximum Entropy (ME), and etc.. The recognition accuracy achieved
by these models generally depends on a well-tagged training corpus and a well set
1 SwissProt: http://us.expasy.org/sprot/
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of features [3, 6, 7, 9, 10]. Recently, hybrid approaches are proposed by combin-
ing coded rules, statistical model and dictionaries [4, 9]. As pointed in [10], it is
expected that systems on a specified evaluation corpus with help of dictionaries
tend to perform better than the general ones without help of any dictionaries. For
example, the recognition performance is significantly improved when dictionary
and rules are applied at post-processing together with a ME-based recognition
mechanism in [4].

In this paper, recognition for protein entities from PubMed2 corpus is ad-
dressed so as to facilitate the automation of protein interaction databases con-
struction. In order to mine more features relevant to protein entities, we assem-
bled a domain-specific protein corpus SRC (SwissProt Reference Corpus) which
were extracted from SwissProt reference articles and we tagged it by simply
matching SwissProt entry collection. Experimental results show that this new
domain corpus is indeed helpful in generating informative patterns used in both
rule-based and statistical models. It is also found that though the derived rules
are fewer and less complicated than the ones used in the rule-based systems Kex
[1] or Yapex [5], the presented model outperforms these two systems in terms of
higher F-scores on a general corpus like GENIA 3.02p 3 and the domain-specific
SRC.

On the other hand, a concise HMM-based model is presented with a back-off
strategy to overcome data sparseness. With a rich set of features, the presented
approaches could achieve promising results, by showing 76-77% F-scores on both
GENIA corpus and SRC. Compared to the results achieved by some successful
systems (the best 78% F-score for protein instances in [9]) which employ dic-
tionaries or semantic lexicon lists, our results are competitive for three reasons.
First, the recognition is done without any help of dictionaries or predefined lex-
icon lists. Second, the presented concise HMM is easily implemented and robust
for different corpora. Third, our results are evaluated with strict annotation and
enetities with the longest annotation are adopted in case they are in the nested
forms.

Besides, this paper addresses the issue of coordination variants while we
tackle with NER problems in written texts. To resolve such term variants, a
method based on heuristic rules and clustering strategy is presented. Experi-
mental results on GENIA corpus 3.0 proved its feasibility by achieving 88.51%
recall and 57.04% precision on a test of 1850 sentences, including 174 variants.

2 Corpus Preparation

In order to boost protein entities recognition by mining more relevant infor-
mation, we assembled a domain-specific corpus ‘SwissProt Ref Corpus’ (‘SRC’
for short), other than the widely-used tagged corpus like GENIA 3.02p. The
new corpus was processed by employing Sentence Splitter4 and Penn Treebank
2 PubMed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Pubmed
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
4 Sentence Splitter: http://l2r.cs.uiuc.edu/˜cogcomp/
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Tokenizer5 for sentence segmentation and tokenization respectively. The POS-
tagging is processed by a HMM-based POS tagger which was developed in our
lab. By using GENIA 3.02p as training set, our POS-tagger could yield 95% F-
score. For the sake of saving human efforts, annotating SRC with all the target
entities was simply implemented with the following steps:

1. Tokens are split by space and hyphen.
2. Each token is converted to lower case except its initial character.
3. Entity is recognized if it matches an entity from SwissProt version 42.0.

The final specific SRC corpus is composed of 2,894 abstracts, which were par-
ticularly selected from SWISSPORT 82,740 reference articles in such a way that
each of them contains at least six target entities. Table 1 lists the basic statistics
for SRC and GENIA 3.02p.

Table 1. The statistics of SRC corpus and GENIA corpus 3.02p.

SRC GENIA
count average count average

Abstract (a) 2,894 1,999

Sentence (s) 28,154 9.73 (s/a) 18,572 9.29 (s/a)
Token (t) 740,001 255.70 (s/a) 490.469 245.36 (t/a)

26.28 (t/s) 26.41 (t/s)
Protein (p) 31,977 11.05 (p/a) 32,525 11.05 (p/a)
Entity 1.14 (p/s) 1.14 (p/a)
Entity Token (t) 57,878 1.81(t/p) 58,200 1.79 (t/p)

3 Coordination Variants Resolution

Coordination variants are one common type of variants in general written texts
like MEDLINE records. For example there are 1598 coordination variants in
GENIA 3.02p corpus and each variant contains 2.1 entities in average. Table
2lists three types of the regular expressions generalized from the GENIA 3.02p
training corpus of 16,684 sentences (in which 1421 coordination variants are
distributed in 1329 sentences). There #, H, T, and R indicate core, head, tail,
and coordinate terms respectively. For example, in the coordination ‘91 and 84
kDa proteins’, ‘91’ and ‘84’ are the core terms, ‘kDa proteins’ is the tail term,
and ‘and’ is the coordinate term.

The variant resolution was implemented with finite state machines (FSM)
which are verified by a test set of 1850 sentences in which 174 variants are
distributed in 165 sentences. Experimental results showed that this approach
yielded 91.38% recall and 42.06% precision (indicated as b̈aseline approacḧın
Table 3). In practice, the precision can be improved by presenting more number
of FSMs so as to cover all possible variant patterns, yet it will slow down the
resolving throughput. In order to increase the sensitivity of coordination iden-
tification, a simple term clustering is employed. Suppose terms ti, tj co-occur
5 http://www.cis.upenn.edu/˜treebank/tokenization.html
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Table 2. Original patterns, expanded patterns, and examples.

Regular Expression Example

Type Original H#(R#)+ human chromosomes 11p15 and 11p13
1 Expanded (H#R)+H# humman chromosomes 11p15 and human chromosome 11p13

Type Original #(R#)+T c-fos, c-jun, and EGR2 mRNA
2 Expanded #T(R#)+T c-fos mRNA, c-jun mRNA, and EGR2 mRNA

Type Original H#(R#)+T human T and B lymphocytes
3 Expanded #T(R#)+T human T lymphocytes and human B lymphocytes

in one coordination variant, and terms ti, tk co-occur in another one. Then we
put ti, tj and tk into one cluster. The clustering procedure was implemented re-
cursively. With such term clustering strategy (indicated as ‘unlimited-distance’
in Table 3), the resolution precision is increased by 4%. This showed that the
clustering approach is helpful to restrict the path movement in FSMs. To dis-
tinguish the closeness of the terms in the same cluster, we furthermore applied
the Floyd-Warshall algorithm to cluster sets. That is, if terms ti, tj co-occur in
a sentence and terms ti, tk co-occur in another one but tj , tk do not co-occur
in any sentence, then the dist(tj , tk) = 2. With this clustering strategy, the pre-
cision became 57.04% (increasing 15% with respect to the baseline method) at
the expense of lower recall.

Table 3. Accuracy of coordination variants identification in GENIA 3.02p.

dist. Variants tp+fp tp Recall Precision F-Score

Baseline N/A 174 378 159 91.38% 42.06% 57.61%

Term unlimited 174 338 158 90.80% 46.75% 61.72%
Clustering 1 174 270 154 88.51% 57.04% 69.37%

4 Protein Entity Recognition

In this paper, protein entity recognition is approached and investigated by both
rule-based and HMM models. The performance verification is implemented by
using both SRC and GENIA 3.02p corpora in such a way that the corpora are
divided into 90% for training phase and 10% for testing phase.

4.1 Rule-Based Approach

The rule-based recognition is implemented by employing the patterns of the
protein nomenclature mined from SRC and GENIA corpora. The patterns are
formed in terms of core, function or predefined terms. Core terms show the closest
resemblance to regular proper names. Function terms describe the functions or
characteristics of a protein. Table 4 shows the frequent regular expressions which
‘C’ indicates core term, ‘F’ indicates function term, and ‘P’ indicates predefined
term, namely specifier, amino acid and unit.
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Table 4. Top 5 regular expressions of protein entities in SRC and GENIA 3.02p.

Regular Expression SRC Regular Expression GENIA

C+ 25.70% C+ 69.64%

C+F+ 21.22% C+F+ 8.14%

F+ 15.57% C+P+ 5.84%

F+P+ 12.62% F+C+ 2.91%

C+P+ 9.36% F+ 2.35%

The function terms may be head or tail function term depending on the
position they appear texts. From our observation of SRC, 58.48% head function
terms appear before an initial uppercase token, and 74.07% tail function terms
appear after an initial uppercase token or a specifier. We define 217 head function
terms and 127 tail function terms. The rest of the terms other than predefined
and function terms are treated as core terms candidates. The candidates may
be the composition of common strings which are useful for identifying unknown
words. For example, a common string ‘CD’ is acquired from a core term ‘CD23’,
and then an unknown word ‘CD25’ will be seen as a core term.

The extraction of protein entities is done by six steps. The first three steps
are aimed to produce the candidates by using term information. If a token is
one of the three type terms, it will be annotated. Steps 4-6 are aimed to acquire
protein entities as many as possible.

Step 1: boundary confirmation We scan the chunk forward (left to right) and
backward (right to left) to fix entity boundaries by exploiting POS pattern in-
formation of protein entities, as shown in Tables 5 and 6.

Table 5. Top 5 POS patterns in SRC and GENIA.

POS Pattern SRC POS Pattern GENIA

NN 79.38% NN 67.57%

NN,CD 12.94% JJ,NN 7.13%

JJ,NN 3.13% NNS 7.11%

JJ,NN 3.02% JJ,NNS 2.94%

CD,NN 0.26% NN,CD 0.96%

Table 6. The top frequent POS tags at the first and the last positions of chunks.

First POS tag Last POS tag
POS SRC GENIA SRC GENIA

CD 0.27% 0.43% 13.12% 1.91%

JJ 6.32% 13.23% 3.03% 0.57%

NN 93.12% 83.20% 83.43% 83.50%

NNS 0.01% 2.28% 0.08% 13.66%

VBN 0.14% 0.31% 0.08% 0.01%
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Step 2: remove invalid single-token chunks A single-token chunk will be treated
as invalid if (a) its characters are in lower case, and the token is not a protein
entity in training data or (b) it is a predefined term only.

Step 3: remove invalid multi-token chunks by using a general set of domain-
independent rules. A chunk will be removed if it composes of the followings: (a)
the predefined terms, (b) the single uppercase English letters, (c) the punctua-
tion marks, and (d) the conjunctions. After the three steps, 68.21% and 52.63%
invalid tokens in SRC and GENIA are removed 98.58% and 96.93% accuracy
rates respectively.

Step 4: mine the tokens surrounding protein entities This step is to acquire
more protein entities. The pattern is formulated as ‘< T−2, T−1, #, T1, T2 >’,
where ‘#’ is token’s number of the protein entity, and the token ‘Ti’ is the ith

token relative to the protein entity. Two measurements namely, confidence and
occurrence are used to justify the usefulness of the patterns. Confidence is the
ratio of the number of correct instances divided by the number of all instances
in training data, and occurrence is the number of all instances in training data.
Patterns are selected whenever their occurrence and confidence are greater than
one and 0.8 respectively, because our system is expected to achieve 80% correct
rate, which is the ratio of the number of correct instances divided by the number
of all retrieved instances.

Step 5: mine the bag-of-word surrounding protein entities For each protein entity
we collect its preceding two tokens and following two tokens. The non-confidence
is used to filter the candidates and it is defined as the ratio of the negative
instances to all instances. Patterns are recognized whenever non-confidence is
greater than 0.8 since our system is expected to yield 80% correct rate.

Step 6: employ syntactic rules Hypernyms may appear in front of hyponyms, and
one common pattern is ‘NP0 such as {NP1, NP2, . . ., (and|or) } NPn’. So we can
mine those clue words by collecting the tokens preceding ‘such as’ and ‘e.g.’. For
example, ‘protein’ is the clue token of ‘. . . proteins, such as CBL and VAV, were
phosphorylated on . . .’. The clue words are the tokens of UMLS concepts and
their corresponding synonyms which are tagged with ‘protein’ semantic type.

The model performance is evaluated in terms of precision (P), recall (R) and
F-score (F) which is 2PR/(R+P). To present performance of rule-based systems,
we use the notations of correct matching defined in [5]. Table 7 shows that the
strict measure, which the proposed hit matches one answer key exactly, can yield
51%-52% F-Score. Table 7 shows that we can get higher F-score if we measure
the performance with PNP (‘protein name parts’), meaning each proposed token
matches any token of the answer key. For example ‘CD surface receptor’ is treated
as ‘PNP’ of ‘activation of the CD28 surface receptor’. In practice, such kind of
annotation result is acceptable. In addition, Table 7 also shows that the terms,
mined from SRC, are adaptable since we can obtain almost the same performance
results from GENIA corpus. Table 8 shows the improvement is obvious for steps
1 to 3, but steps 4 to 6 have little effect. On the other hand, the precision can
be boosted obviously but not much for recall.
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Table 7. Experimental results by rule-based approach.

Notation tp+sn tp+fp tp recall precision F-Score
SLOPPY 3234 4782 2987 92.36% 62.46% 74.53%
PNP 3234 4782 2859 88.40% 59.79% 71.33%

SRC STRICT 3234 4782 2077 64.22% 43.43% 51.82%
LEFT 3234 4782 2620 81.01% 54.79% 65.37%
RIGHT 3234 4782 2363 73.07% 49.41% 58.96%
LorR 3234 4782 2907 89.89% 60.79% 72.53%

Notation tp+sn tp+fp tp recall precision F-Score
SLOPPY 3451 4923 3010 87.22% 61.14% 71.89%
PNP 3451 4923 2837 82.21% 57.63% 67.76%

GENIA STRICT 3451 4923 2123 61.52% 43.12% 50.70%
LEFT 3451 4923 2765 80.12% 56.16% 66.04%
RIGHT 3451 4923 2296 66.53% 46.64% 54.84%
LorR 3451 4923 2938 85.13% 59.68% 70.17%

Table 8. The intermediate results of rule-based approach.

Procedure tp+sn tp+fp tp recall precision F-Score
step1 3234 10480 2051 63.42% 19.57% 29.91%
step1-2 3234 5493 2043 63.17% 37.19% 46.82%

SRC step1-3 3234 4911 2040 63.08% 41.54% 50.09%
step1-4 3234 4977 2104 65.06% 42.27% 51.25%
step1-5 3234 4781 2077 64.22% 43.33% 51.83%
step1-6 3234 4782 2077 64.22% 43.43% 51.82%

Procedure tp+sn tp+fp tp recall precision F-Score
step1 3451 7911 2160 62.59% 27.30% 38.02%
step1-2 3451 5173 2129 61.69% 41.16% 49.37%

GENIA step1-3 3451 5082 2127 61.63% 41.85% 49.85%
step1-4 3451 5164 2155 62.45% 41.73% 50.03%
step1-5 3451 4915 2120 61.43% 43.13% 50.68%
step1-6 3451 4923 2123 51.52% 43.12% 50.70%

4.2 HMM-Based Approaches

The statistical approach for NER is implemented by a concise HMM model
(Concise-HMM) which employs a rich set of input features. Its performance is
verified with SRC and GENIA 3.02p by comparing two other models, namely,
traditional model (Traditional-HMM) and mutual information model (MI-HMM)
which was presented in [9] and produced high F-scores in MUC-6 and MUC-7.
The comparison is made in the same environment settings.

In this paper, all the models are trained with the same set of useful features
including internal, external and global features. Internal features are those sur-
face clues in tokens (e.g. initial character is upper case). There are 17 internal
features mined from the training corpus. External features indicate the exter-
nal information associated with tokens. We treated POS tags as our external
features. Global features are the trigger nouns extracted from whole training
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corpus by using Chi-square test. Besides, the complete-link clustering algorithm
is applied to the mined nouns so as to reduce their dimensions. For window size
of three sentences, we have 214 and 142 noun clusters in SRC and GENIA corpus
respectively.

Traditional HMM. Given a token sequence T n
1 = t1t2 . . . tn, the goal is to

find an optimal state sequence Sn
1 = s1s2 . . . sn that maximizes log Pr(Sn

1 |T n
1 ),

the logarithm probability of state sequence Sn
1 corresponding to the given token

sequence T n
1 . By applying Bayes’s rule to

Pr(Sn
1 |T n

1 ) =
Pr(Sn

1 |T n
1 )

Pr(T n
1 )

(1)

we have

arg max
S log Pr(Sn

1 |T n
1 ) = arg max

S log Pr(Sn
1 |T n

1 ) + log Pr(Sn
1 )) (2)

where

Pr(T n
1 |Sn

1 ) =
n∏

i=1

Pr(ti|si) (3)

and

Pr(Sn
1 ) =

n∏

i=1

Pr(si|si−1) (4)

with the assumption of conditional probability independence and considering
preceding state. Therefore equation (2) can be rewritten as:

arg max
S log Pr(Sn

1 |T n
1 ) = arg max

S

(
n∑

i−1

(log Pr(ti|si) + log Pr(si|si−1))

)
(5)

MI-HMM. Different from traditional HMM, MI-HMM is aimed to maximize
the equation:

arg max
S log Pr(Sn

1 |T n
1 ) = arg max

S

(
log Pr(Sn

1 ) + log
Pr(Sn

1 , T n
1 )

Pr(Sn
1 ) • Pr(T n

1 )
)
)

(6)

In order to simplify the computation, the mutual information independence is
assumed to be:

MI(Sn
1 , T n

1 ) =
n∑

i=1

MI(si, T
n
1 ) (7)

or

log
Pr(Sn

1 , T n
1 )

Pr(Sn
1 ) • Pr(T n

1 )
=

n∑

i=1

log
Pr(si, T

n
1 )

Pr(si) • Pr(T n
1 )

(8)

Applying it to equation (6), we have:

arg max
S log Pr(Sn

1 |T n
1 )=arg max

S

(
log Pr(Sn

1 )−
n∑

i=1

log Pr(si)+
n∑

i=1

log Pr(si|T n
1 )

)

(9)
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Concise HMM. The presented concise HMM is based on the idea of maxi-
mizing the fundamental log Pr(Sn

1 |T n
1 ). In the equation (9), log Pr(Sn

1 |T n
1 ) and∑n

i=1 log Pr(si) are found to carry less meaning because the weak probabilities
of states and state transitions are merely 3-by-3 and 3-by-1 matrices respec-
tively. Thus, a concise HMM can be obtained by simplifying the formula (9) to
be equation (10):

arg max
S log Pr(Sn

1 |T n
1 ) = arg max

S log Pr(Sn
1 ) −

n∑

i=1

log Pr(si|T n
1 ) (10)

Since the concise HMM does not take its state transition into account, we put
previous state in the model to ensure correct state induction. Because the pre-
sented HMM approach concerned many features mentioned above, it is possible
to train a high-accuracy probability model. To overcome spareseness problem,
we use a back-off strategy which aims at the token sequence T n

1 in Pr(Sn
1 |T n

1 )
or in Pr(si|T n

1 ) where T n
1 represents not only a token sequence but also the full

set of sequence’s features. There are two back-off levels. First level is based on
different combinations of tokens and their features, and T n

1 will be assigned in
the descending order:

< s−1, t−1, t0, f0 >, < s−1, t0, f0 >, < s−1, t−1, f0 >, < s−1, f0 >
where fi represents the feature set including internal, external and global fea-
tures. ti is a token, si expresses a HMM state, and i is the ith one relative to
current token. Second level is based on different combinations of features, and
fi in first level is assigned in the descending order:

< f I
i , fE

i , fG
i >, < f I

i , fE
i >, < f I

i >
where f I

i , fE
i and fG

i represent internal, external and global features, respec-
tively.

4.3 Method Comparisons

Method comparisons for the three HMM-based models were made on both SRC
corpus and GENIA corpus in the same environment settings. We used the same
back-off model for concise and mutual information HMM, but not for traditional
HMM. Table 9 shows that concise HMM with rule-based features (i.e. concise-
ruled) yielded the best result. Traditional HMM obtains good high precision,
but low recall since we chose a severe probability model to get the best F-
score. It is also noticed that the performance of MI-HMM turned out to be the
worst because the back-off model was used to optimize concise HMM. On the
other hand, Table 10 shows all kinds of features turned out to be positive effect
(fE > f I > fG) for concise HMM. Such result is similar to that concluded from
[10]. Table 11 lists the comparisons of the presented approaches to other well-
known approaches on the public evaluation GENIA 3.x corpus. It is noticed that
the presented rule-based approach with its simple general rules outperformed the
other two complicated rule-based systems. On the other hand, the performance
of the presented concise HMM-based models is comparable to the best model
presented in [4]. However, we do not need any dictionary or rules in our model.
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Table 9. HMM-based model comparison.

HMM tp+sn tp+fp tp recall precision F-Score
Concise 3234 2953 2355 72.82% 79.75% 76.13%

SRC Concise-ruled 3234 2949 2391 73.93% 81.08% 77.34%
MI 3234 3439 2384 73.72% 69.32% 71.45%
Traditional 3234 2396 2086 64.50% 87.06% 74.10%

HMM tp+sn tp+fp tp recall precision F-Score
Concise 3451 3285 2553 73.98% 77.72% 75.80%

GENIA Concise-ruled 3451 3323 2596 75.22% 78.12% 76.65%
MI 3451 3415 2305 66.79% 67.50% 67.14%
Traditional 3451 2863 2263 65.58% 79.04% 71.68%

Table 10. The effects of features in concise HMM.

Features tp+sn tp+fp tp recall precision F-Score Diff.
All 3234 2953 2355 72.82% 79.75% 76.13%

SRC All-fG 3234 2951 2335 72.20% 79.13% 75.51% -0.62%
All-fE 3234 2894 2284 70.62% 78.92% 74.54% -1.59%
All-fI 3234 2941 2303 71.21% 78.31% 74.59% -1.54%

Features tp+sn tp+fp tp recall precision F-Score Diff.
ALL 3451 3285 2553 73.98% 77.72% 75.80%

GENIA All-fG 3451 3267 2534 73.43% 77.56% 75.44% -0.36%
All-fE 3451 3176 2442 70.76% 76.89% 73.70% -2.10%
All-fI 3451 3213 2467 71.49% 76.78% 74.04% -1.76%

Table 11. Comparison to other systems on GENIA corpus.

System Method GENIA Recall Precision F-Score

Lee et. al. [3] SVM 3.0p 78.80% 61.70% 69.20%

Lin et. al. [4] ME-hybrid 3.01 77.00% 80.00% 78.50%

KeX Rule-based 3.02p 43.67% 37.40% 40.29%

Yapex Rule-based 3.02p 45.06% 54.17% 47.48%

Rule-based 3.02p 61.52% 43.12% 50.70%
Ours concise-HMM 3.02p 73.98% 77.72% 75.80%

concise-ruled 3.02p 75.22% 78.12% 76.64%

5 Conclusions and Future Work

In this paper, we presented different textual mining strategies applicable to sup-
porting full automation of protein entities recognition. Recognition for the en-
tities in coordination variants is also concerned. To our best knowledge, our
approach is the first one to cope with the term variants in the named entity ex-
traction from biomedical texts. On the other hand, practical textual mining to
protein entities recognition were presented by both rule and statistical models.
Without the help of any dictionaries, the kernel recognition based on a concise
HMM-based model turns out to be promising for protein entity extraction.
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Future work includes the manual annotation correction of SRC for fine clas-
sification, exploitation of dictionaries for better recognition performance and the
improvement of the resolution for coordination variants by using the semantic
type information of biomedical thesaurus like UMLS. In addition, novel mining
techniques to resolve other types of term variants should be explored for full
NER automation.
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