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Abstract. The increasing complexity, heterogeneity and dynamism of
emerging pervasive Grid environments and applications has necessitated
the development of autonomic self-managing solutions, which are based
on strategies used by biological systems to deal with similar challenges of
complexity, heterogeneity, and uncertainty. This paper introduces Project
AutoMate and describes its key components. The overall goal of Project
Automate is to investigate conceptual models and implementation ar-
chitectures that can enable the development and execution of such self-
managing Grid applications. Two applications enabled by AutoMate are
also described.

1 Introduction

The emergence of pervasive wide-area distributed computing, such as pervasive
information systems and computational Grid, has enabled a new generation of
applications that are based on seamless aggregation and interactions. For exam-
ple, it is possible to conceive of a new generation of scientific and engineering
simulations of complex physical phenomena that symbiotically and opportunis-
tically combine computations, experiments, observations, and real-time data,
and can provide important insights into complex systems such as interacting
black holes and neutron stars, formations of galaxies, and subsurface flows in
oil reservoirs and aquifers, etc. Other examples include pervasive applications
that leverage the pervasive information Grid to continuously manage, adapt,
and optimize our living context, crisis management applications that use perva-
sive conventional and unconventional information for crisis prevention and re-
sponse, medical applications that use in-vivo and in-vitro sensors and actuators
for patient management, and business applications that use anytime-anywhere
information access to optimize profits.

However, the underlying Grid computing environment is inherently large,
complex, heterogeneous and dynamic, globally aggregating large numbers of in-
dependent computing and communication resources, data stores and sensor net-
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works. Furthermore, emerging applications are similarly complex and highly dy-
namic in their behaviors and interactions. Together, these characteristics result
in application development, configuration and management complexities that
break current paradigms based on passive components and static compositions.
Clearly, there is a need for a fundamental change in how these applications are
developed and managed. This has led researchers to consider alternative pro-
gramming paradigms and management techniques that are based on strategies
used by biological systems to deal with complexity, dynamism, heterogeneity
and uncertainty. The approach, referred to as autonomic computing, aims at
realizing computing systems and applications capable of managing themselves
with minimal human intervention.

This paper has two objectives. The first is to investigate the challenges and
requirements of programming Grid applications and to present self-managing ap-
plications as a means for addressing these requirements. The second is to intro-
duce Project AutoMate, which investigates autonomic solutions to deal with the
challenges of complexity, dynamism, heterogeneity and uncertainty in Grid envi-
ronments. The overall goal of Project AutoMate is to develop conceptual models
and implementation architectures that can enable the development and execution
of such self-managing Grid applications. Specifically, it investigates programming
models, frameworks and middleware services that support definition of autonomic
elements, the development of autonomic applications as dynamic and opportunis-
tic compositions of these autonomic elements, and the policy, content and context
driven execution and management of these applications.

In this paper we introduce AutoMate and its key components, and describe
their underlying conceptual models and implementations. Specifically we de-
scribe the Accord programming system, the Rudder decentralized coordination
framework, and the Meteor content-based middleware providing support for
content-based routing, discovery and associative messaging. We also present two
autonomic Grid applications enabled by AutoMate. The first application inves-
tigates the autonomic optimization of an oil reservoir by enabling a systematic
exploration of a broader set of scenarios, to identify optimal locations based on
current operating conditions. The second application investigates the autonomic
simulations and management of a forest fire prop gation based on static and
dynamic environment and vegetation conditions.

The rest of this paper is organized as follows. Section 2 outlines the challenges
and requirements of Grid computing. Section 3 introduces Project AutoMate,
presents its overall architecture and describes its key components, i.e., the Accord
programming framework, the Rudder decentralized coordination framework and
the Meteor content-based middleware. Section 4 presents the two illustrative
Grid applications enabled by AutoMate. Section 5 presents a conclusion.

2 Grid Computing – Challenges and Requirements

The goal of the Grid concept is to enable a new generation of applications
combining intellectual and physical resources that span many disciplines and
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organizations, providing vastly more effective solutions to important scientific,
engineering, business and government problems. These new applications must
be built on seamless and secure discovery, access to, and interactions among
resources, services, and applications owned by many different organizations.

Attaining these goals requires implementation and conceptual models [1].
Implementation models address the virtualization of organizations which leads
to Grids, the creation and management of virtual organizations as goal-driven
compositions of organizations, and the instantiation of virtual machines as the
execution environment for an application. Conceptual models define abstract
machines that support programming models and systems to enable application
development. Grid software systems typically provide capabilities for: (i) creating
a transient “virtual organization” or virtual resource configuration, (ii) creating
virtual machines composed from the resource configuration of the virtual orga-
nization (iii) creating application programs to execute on the virtual machines,
and (iv) executing and managing application execution. Most Grid software sys-
tems implicitly or explicitly incorporate a programming model, which in turn
assumes an underlying abstract machine with specific execution behaviors in-
cluding assumptions about reliability, failure modes, etc. As a result, failure to
realize these assumptions by the implementations models will result in brittle
applications. The stronger the assumptions made, the greater the requirements
for the Grid infrastructure to realize these assumptions and consequently its
resulting complexity. In this section we first highlight the characteristics and
challenges of Grid environments, and outline key requirements for programming
Grid applications. We then introduce autonomic self-managing Grid applications
that can address these challenges and requirements.

2.1 Characteristics of Grid Execution Environments and
Applications

The key characteristics of Grid execution environments and applications are:

Heterogeneity: Grid environments aggregate large numbers of independent
and geographically distributed computational and information resources, includ-
ing supercomputers, workstation-clusters, network elements, data-storages, sen-
sors, services, and Internet networks. Similarly, applications typically combine
multiple independent and distributed software elements such as components,
services, real-time data, experiments and data sources.

Dynamism: The Grid computation, communication and information environ-
ment is continuously changing during the lifetime of an application. This includes
the availability and state of resources, services and data. Applications similarly
have dynamic runtime behaviors in that the organization and interactions of the
components/services can change.

Uncertainty: Uncertainty in Grid environment is caused by multiple factors,
including (1) dynamism, which introduces unpredictable and changing behaviors
that can only be detected and resolved at runtime, (2) failures, which have an
increasing probability of occurrence and frequencies as system/application scales
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increase; and (3) incomplete knowledge of global system state, which is intrinsic
to large decentralized and asynchronous distributed environments.

Security: A key attribute of Grids is flexible and secure hardware/software
resource sharing across organization boundaries, which makes security (authen-
tication, authorization and access control) and trust critical challenges in these
environments.

2.2 Requirements for Grid Programming Systems

The characteristics listed above impose requirements on the programming sys-
tems for Grid applications. Grid programming systems must be able to spec-
ify applications which can detect and dynamically respond during execution to
changes in both, the state of execution environment and the state and require-
ments of the application. This requirement suggests that: (1) Grid applications
should be composed from discrete, self-managing components which incorpo-
rate separate specifications for all of functional, non-functional and interaction-
coordination behaviors. (2) The specifications of computational (functional) be-
haviors, interaction and coordination behaviors and non-functional behaviors
(e.g. performance, fault detection and recovery, etc.) should be separated so that
their combinations are composable. (3) The interface definitions of these compo-
nents should be separated from their implementations to enable heterogeneous
components to interact and to enable dynamic selection of components.

Given these features of a programming system, a Grid application requiring a
given set of computational behaviors may be integrated with different interaction
and coordination models or languages (and vice versa) and different specifica-
tions for non-functional behaviors such as fault recovery and QoS to address the
dynamism and heterogeneity of applications and the environment.

2.3 Grid Computing Research

Grid computing research efforts over the last decade can be broadly divided into
efforts addressing the realization of virtual organizations and those addressing
the development of Grid applications. The former set of efforts have focused
on the definition and implementation of the core services that enable the spec-
ification, construction, operation and management of virtual organizations and
instantiation of virtual machines that are the execution environments of Grid
applications. Services include (1) security services to enable the establishment
of secure relationships between a large number of dynamically created subjects
and across a range of administrative domains, each with its own local security
policy, (2) resource discovery services to enable discovery of hardware, software
and information resources across the Grid, (3) resource management services
to provide uniform and scalable mechanisms for naming and locating remote
resources, support the initial registration/discovery and ongoing monitoring of
resources, and incorporate these resources into applications, (4) job management
services to enable the creation, scheduling, deletion, suspension, resumption, and
synchronization of jobs, (5) data management services to enable accessing, man-
aging, and transferring of data, and providing support for replica management
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and data filtering. Efforts in this class include Globus [2], Unicore [3], Condor [4]
and Legion [5]. Other efforts in this class include the development of common
APIs, toolkits and portals that provide high-level uniform and pervasive access
to these services. These efforts include the Grid Application Toolkit (GAT) [6],
DVC [7] and the Commodity Grid Kits (CoG Kits) [8]. These systems often
incorporate programming models or capabilities for utilizing programs written
in some distributed programming model. For example, Legion implements an
object-oriented programming model, while Globus provides a capability for ex-
ecuting programs utilizing message passing.

The second class of research efforts, which is also the focus of this paper, deals
with the formulation, programming and management of Grid applications. These
efforts build on the Grid implementation services and focus on programming
models, languages, tools and frameworks, and application runtime environments.
Research efforts in this class include GrADS [9], GridRPC [10], GridMPI [11],
Harness [12], Satin/IBIS [13] [14], XCAT [15] [16], Alua [17], G2 [18], J-Grid [19],
Triana [20], and ICENI [21].

These systems have essentially built on, combined and extended existing mod-
els for parallel and distributed computing. For example, GridRPC extends the
traditional RPC model to address system dynamism. It builds on Grid system
services to combines resource discovery, authentication/authorization, resource
allocation and task scheduling to remote invocations. Similarly, Harness and
GridMPI build on the message passing parallel computing model, Satin sup-
ports divide-and-conquer parallelism on top of the IBIS communication system.
GrADS builds on the object model and uses reconfigurable object and perfor-
mance contracts to address Grid dynamics, XCAT and Alua extend the compo-
nent based model. G2, J-Grid, Triana and ICENI build on various service based
models. G2 builds on .Net [22], J-Grid builds on Jini [23] and current implemen-
tations of Tirana and ICENI build on JXTA [24]. While this is natural, it also
implies that these systems implicitly inherit the assumptions and abstractions
that underlie the programming models of the systems upon which they are based
and thus in turn inherit their assumptions, capabilities and limitations.

2.4 Self- anaging Applications on the Grid

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism
of emerging Grid environments result in application programming and runtime
management complexities that break current paradigms. This is primarily be-
cause the programming models and the abstract machine underlying these mod-
els makes strong assumptions about common knowledge, static behaviors and
system guarantees that cannot be realized by Grid virtual machines and which
are not true for Grid applications. Addressing these challenges requires redefining
the programming framework to address the separations outlined above. Specif-
ically, it requires (1) static (defined at the time of instantiation) application
requirements and system and application behaviors to be relaxed, (2) the be-
haviors of elements and applications to be sensitive to the dynamic state of

m
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the system and the changing requirements of the application and be able to
adapt to these changes at runtime, (3) required common knowledge be expressed
semantically (ontology and taxonomy) rather than in terms of names, addresses
and identifiers, and (4) the core enabling middleware services (e.g., discovery,
messaging) be driven by such a semantic knowledge. In the rest of this paper
we describe Project AutoMate, which attempts to address these challenges by
enabling autonomic self-managing Grid applications.

3 Project AutoMate: Enabling Self- anaging Grid
Applications

Project AutoMate [25] investigates autonomic solutions that are based on the
strategies used by biological systems to deal with similar challenges of complex-
ity, dynamism, heterogeneity and uncertainty. The goal is to realize systems
and applications that are capable of managing (i.e., configuring, adapting, op-
timizing, protecting, healing) themselves. Project AutoMate aims at developing
conceptual models and implementation architectures that can enable the de-
velopment and execution of such self-managing Grid applications. Specifically,
it investigates programming models, frameworks and middleware services that
support the definition of autonomic elements, the development of autonomic
applications as the dynamic and opportunistic composition of these autonomic
elements, and the policy, content and context driven definition, execution and
management of these applications.

A schematic overview of AutoMate is presented in Figure 1. Components of
AutoMate include the Accord [26] programming system, the Rudder [27] decen-
tralized coordination framework, and the Meteor [28] content-based middleware
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Fig. 1. A schematic overview of AutoMate.
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providing support for content-based routing, discovery and associative messag-
ing. Project AutoMate additionally includes the Sesame [29] context-based ac-
cess control infrastructure, the DAIS [30] cooperative-protection services and the
Discover collaboratory [31, 32] services for collaborative monitoring, interaction
and control, which are not described here.

3.1 Accord, a Programming Framework for Autonomic
Applications

The Accord programming system [26] addresses Grid programming challenges by
extending existing programming systems to enable autonomic Grid applications.
Accord realizes three fundamental separations: (1) a separation of computations
from coordination and interactions; (2) a separation of non-functional aspects
(e.g. resource requirements, performance) from functional behaviors, and (3)
a separation of policy and mechanism - policies in the form of rules are used
to orchestrate a repertoire of mechanisms to achieve context-aware adaptive
runtime computational behaviors and coordination and interaction relationships
based on functional, performance, and QoS requirements. The components of
Accord are described below.

Accord Programming Model: Accord extends existing distributed program-
ming models, i.e., object, component and service based models, to support au-
tonomic self-management capabilities. Specifically it extends the entities and
composition rules defined by the underlying programming model to enable com-
putational and composition/interaction behaviors to be defined at runtime using
high-level rules. The resulting autonomic elements and their autonomic compo-
sition are described below. Note that other aspects of the programming model,
i.e., operations, model of computation and rules for composition are inherited
and maintained by Accord.

Autonomic Elements: An autonomic element extends programming elements
(i.e., objects, components, services) to define a self-contained modular software
unit with specified interfaces and explicit context dependencies. Additionally,
an autonomic element encapsulates rules, constraints and mechanisms for self-
management, and can dynamically interact with other elements and the system.
An autonomic element is illustrated in Figure 2 and is defined by 3 ports:

Fig. 2. An autonomic component

The functional port (Γ ) defines a set of functional behaviors γ provided
and used by the element. γ ∈ Ω × Λ, where Ω is the set of inputs and Λ is the
set of outputs of the element, and γ defines a valid input-output set.
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The control port (
∑

) is the set of tuples (σ, ξ), where σ is a set of sensors
and actuators exported by the element, and ξ is the constraint set that controls
access to the sensors/actuators. Sensors are interfaces that provide information
about the element while actuators are interfaces for modifying the state of the
element. Constraints are based on state, context and/or high-level access polices.

The operational port (Θ) defines the interfaces to formulate, dynamically
inject and manage rules that are used to manage the runtime behavior of the
elements and the interactions between elements, between elements and their
environments, and the coordination within an application.

Each autonomic element is associated with an element manager (possibly
embedded) that is delegated to manage its execution. The element manager
monitors the state of the element and its context, and controls the execution of
rules. Note that element managers may cooperate with other element managers
to fulfill application objectives.

Rules in Accord: Rules incorporate high-level guidance and practical human
knowledge in the form of if-then expressions, i.e., IF condition THEN action,
similar to production rule, case-based reasoning and expert systems. Condition
is a logical combination of element (and environment) sensors, function inter-
faces and events. Action consists of a sequence of invocations of element actuators
and/or system actuators, and other interfaces. A rule fires when its condition
expression evaluates to be true and causes the corresponding actions to be ex-
ecuted. A priority based mechanism is used to resolve conflicts. Two classes
of rules are defined: (1) behavioral rules that control the runtime functional
behaviors of an autonomic element (e.g., the dynamic selection of algorithms,
data representation, input/output format used by the element), and (2)inter-
action rules that control the interactions between elements, between elements
and their environment, and the coordination within an autonomic application
(e.g., communication mechanism, composition and coordination of the elements).
Note that behaviors and interactions expressed by these rules are defined by the
model of computation and the rules for composition of the underlying program-
ming model.

Behavioral rules are executed by an element manager embedded within a
single element without affecting other elements. Interaction rules define interac-
tions among elements. For each interaction pattern, a set of interaction rules are
defined and dynamically injected into the corresponding elements. The coordi-
nated execution of these rules results in the desired interaction and coordination
behaviors between the elements.

Autonomic composition in Accord: Dynamic composition enables relationships
between elements to be established and modified at runtime. Operationally, dy-
namic composition consists of a composition plan or workflow generation and
execution. Plans may be created at runtime, possibly based on dynamically
defined objectives, policies, and the context and content of applications and sys-
tems. Plan execution involves discovering elements, configuring them and defin-
ing interaction relationships and mechanisms. This may result in elements being
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added, replaced or removed or the interaction relationships between elements
being changed.

In Accord, composition plans may be generated using the Accord Composi-
tion Engine (ACE) [33] or using other approaches, and are expressed in XML.
Element discovery uses the Meteor content-based middleware and specifically
the Squid discovery service [34]. Plan execution is achieved by a peer-to-peer
control network of element managers and agents within Rudder [27]. A composi-
tion relationship between two elements is defined by the control structure (e.g.,
loop, branch) and/or the communication mechanism (e.g., RPC, shared-space)
used. A composition agent translates this into a suite of interaction rules, which
are then injected into corresponding element managers. Element managers exe-
cute the rules to establish control and communication relationships among these
elements in a decentralized and parallel manner. Rules can be similarly used for
addition or deletion of elements. Note that the interaction rules must be based on
the core primitives provided by the system. Accord defines a library of rule sets
for common control and communications relationships between elements. The
decomposition procedure will guarantee that the local behaviors of individual
elements will coordinate to achieve the application’s objectives. Runtime nego-
tiation protocols provided by Accord address runtime conflicts and conflicting
decisions caused by a dynamic and uncertain environment.

Accord Implementation Issues: The Accord abstract machine assumes the
existence of common knowledge in the form of an ontology and taxonomy that
defines the semantics for specifying and describing application namespaces, ele-
ment interfaces, sensors and actuators, and the context and content of systems
and applications. This common semantics is used for formulating rules for auto-
nomic management of elements and dynamic composition and interactions be-
tween the elements. Further, the abstract machine assumes time-asynchronous
system behavior with fail-stop failure modes. Finally, Accord assumes the ex-
istence of an execution environment that provides (1) an agent-based control
network, (2) support for associative coordination, (3) services for content-based
discovery and messaging, (4) support of context-based access control and (4)
services for constructing and managing virtual machines for a given virtual or-
ganization. These requirements are addressed respectively by Rudder, Meteor,
Sesame/DAIS and the underlying Grid middleware on which it builds.

Accord decouples interaction and coordination from computation, and en-
ables both these behaviors to be managed at runtime using rules. This en-
ables autonomic elements to change their behaviors, and to dynamically estab-
lish/terminate/change interaction relationships with other elements. Deploying
and executing rules does impact performance, however, it increases the robust-
ness of the applications and their ability to manage dynamism. Further, our
observations indicate that the runtime changes to interaction relationships are
infrequent and their overheads are relatively small. As a result, the time spent
to establish and modify interaction relationships is small as compared to typical
computation times. A prototype implementation and evaluation of its perfor-
mance overheads is presented in [35, 36].
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3.2 Rudder Coordination Framework

Rudder [27] is a scalable coordination middleware for supporting self-managing
applications in decentralized distributed environments. The goal of Rudder is
to provide the core capabilities for supporting autonomic compositions, adapta-
tions, and optimizations. Rudder consists of two key components: (1) COMET,
a fully decentralized coordination substrate that enables flexible and scalable co-
ordination among agents and autonomic elements, and (2) an agent framework
composed of software agents and agent interaction and negotiation protocols.
The adaptiveness and sociableness of software agents provides an effective mech-
anism for managing individual autonomic elements and their relationships in an
adaptive manner. This mechanism enables appropriate application behaviors to
be dynamically negotiated and enacted by adapting classical machine learning,
control, and optimization models and theories. The COMET substrate provides
the core messaging and eventing services for connecting agent networks and
scalably supporting various agent interactions, such as mutual exclusion, con-
sensus, and negotiation. Rudder effectively supports the Accord programming
framework and enables autonomic self-managing applications.

The COMET Substrate: COMET provides a global virtual shared coordi-
nation space associatively accessible by all peer agents, and the access is in-
dependent of the physical location of the tuples or identifiers of the host. The
virtual coordination space builds on an associative messaging substrate and im-
plements a distributed hash table, where the index space is directly generated
from the semantic information space (ontology) used by the coordinating enti-
ties. COMET also supports dynamically constructed, transient spaces to enable
context locality to be explicitly exploited for improved performance.

COMET consists of layered abstractions prompted by a fundamental sepa-
ration of communication and coordination concerns. It provides an associative
communication abstraction and guarantees that content-based query messages,
specified using flexible content descriptors, are fully served with bounded costs.
This layer essentially maps the virtual information space in a deterministic way
to the dynamic set of currently available peer nodes in the system, while main-
taining content locality. The COMET coordination abstraction extends the tra-
ditional data-driven coordination model with event-based reactivity to changes
in system state and data access operations. It defines a reactive tuple abstraction,
which consists of additional components: a condition that associates reaction to
events, and a guard that specifies how and when the reaction will be executed
(e.g., immediately, once). The condition is evaluated on an access event. If it
evaluates to true, the corresponding reaction is executed. The COMET coor-
dination abstraction provides the basic Linda-like primitives, such as Out, In,
and Rd. These basic operations operate on regular as well as reactive tuples and
retain their Linda semantics.

The Agent Framework: The Rudder agent framework is composed of a dy-
namic network of software agents existing at different levels, ranging from in-
dividual system/application elements to the overall system/application. Agents
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monitor the element states, manage element behaviors and dependencies, coor-
dinate element interactions, and cooperate to manage overall system/application
behaviors. An agent is a processing unit that perform actions based on rules,
which are dynamically defined to satisfy system/application requirements. Fur-
ther, agents use profiles which are used to identify and describe elements, in-
teract with them and control them. A profile consists of a set of (functional
and non-functional) attributes and operators, which are semantically defined
using an application-specific ontology. The framework additionally defines a set
of protocols for agent coordination and application/system management. Dis-
covery protocols support the registering, unregistering, and discovery of sys-
tem/application elements. Control protocols allow the agents to query element
states, control their behaviors and orchestrate their interactions. These protocols
include negotiation, notification, and mutual exclusion. The agent coordination
protocol are scalably and robustly implemented in using the abstractions and
service provided by COMET. COMET builds on an associative communication
middleware, Meteor, which is described below.

3.3 Meteor: A Content-Based Middleware

Meteor [28] is a scalable content-based middleware infrastructure that provides
services for content routing, content discovery and associative interactions. The
Meteor stack consists of 3 key components: (1) a self-organizing content overlay,
(2) a content-based routing engine and discovery service (Squid), and (3) the
Associative Rendezvous Messaging Substrate (ARMS). The Meteor overlay is
composed of Rendezvous Peer (RP) nodes, which may be any node on the Grid
(e.g., gateways, access points, message relay nodes, servers or end-user comput-
ers). RP nodes can join or leave the network at any time. The content overlay
provides a single operation, lookup(identifier), which requires an exact content
identifier (e.g., name). Given an identifier, this operation locates the peer node
where the content should be stored or fetched.

Squid [34] is the Meteor content-based routing engine and decentralized infor-
mation discovery service. It supports flexible content-based routing and complex
queries containing partial keywords, wildcards, and ranges. Squid guarantees
that all existing data elements that match a query will be found. The key in-
novation of Squid is the use of a locality preserving and dimension reducing
indexing scheme, based on the Hilbert Space Filling Curve (SFC), which effec-
tively maps the multidimensional information space to the peer identifier space.
Keywords can be common words or values of globally defined attributes, depend-
ing on the nature of the application that uses Squid, and are based on common
ontologies and taxonomies.

The ARMS layer [28] implements the Associative Rendezvous (AR) inter-
action paradigm. AR is a paradigm for content-based decoupled interactions
with programmable reactive behaviors. Rendezvous-based interactions provide
a mechanism for decoupling senders and receivers, in both space and time. Such
decoupled asynchronous interactions are naturally suited for large, distributed,
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and highly dynamic systems such as pervasive Grid environments. AR extends
the conventional name/identifier-based rendezvous in two ways. First, it uses
flexible combinations of keywords (i.e, keyword, partial keyword, wildcards and
ranges) from a semantic information space, instead of opaque identifiers (names,
addresses) that have to be globally known. Interactions are based on content
described by these keywords. Second, it enables the reactive behaviors at the
rendezvous points to be encapsulated within messages, therefore increasing flex-
ibility and enabling multiple interaction semantics (e.g., broadcast multicast,
notification, publisher/subscriber, mobility, etc.).

3.4 Current Status

The core components of AutoMate have been prototyped and are currently be-
ing used to enable self-managing applications in science and engineering. The
initial prototype of Accord extended an object-oriented framework based on
C++ and MPI. The current implementation extends the DoE Common Compo-
nent Architecture (CCA) [37] and we are working on extending an OGSA-based
programming system. Current prototypes of Rudder and Meteor build on the
JXTA [24] platform and use existing Grid middleware services. Current applica-
tions include autonomic oil reservoir optimizations [31, 38], autonomic forest-fire
management [39], autonomic runtime management of adaptive simulations [40],
and enabling sensor-based pervasive applications [28]. The first two application
are briefly described below. Further information about AutoMate and its com-
ponents and applications can be obtained from http://automate.rutgers.edu/.

4 Autonomic Grid Applications

4.1 Autonomic Oil-Reservoir Optimization

One of the fundamental problems in oil reservoir production is determining the
optimal locations of the oil production and injection wells. However, the se-
lection of appropriate optimization algorithms, the runtime configuration and
invocation of these algorithms and the dynamic optimization of the reservoir
remains a challenging problem. In this research we use AutoMate to support au-
tonomic aggregations, compositions and interactions and enable an autonomic
self-optimizing reservoir application. The application consists of: (1) sophisti-
cated reservoir simulation components that encapsulate complex mathematical
models of the physical interaction in the subsurface, and execute on distributed
computing systems on the Grid; (2) Grid services that provide secure and co-
ordinated access to the resources required by the simulations; (3) distributed
data archives that store historical, experimental and observed data; (4) sensors
embedded in the instrumented oilfield providing real-time data about the cur-
rent state of the oil field; (5) external services that provide data relevant to
optimization of oil production or of the economic profit such as current weather
information or current prices; and (6) the actions of scientists, engineers and
other experts, in the field, the laboratory, and in management offices.
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(a)

(b)

Fig. 3. Autonomic optimization of the well placement problem using (a) VFSA algo-

rithm (b) SPSA algorithm

The main components of the autonomic reservoir framework [31, 38] are (i)
instances of distributed multi-model, multi-block reservoir simulation compo-
nents, (ii) optimization services based on the Very Fast Simulated Annealing
(VFSA) [31] and Simultaneous Perturbation Stochastic Approximation (SPSA)
[38], (iii) economic modeling services, (iv) real-time services providing current
economic data (e.g. oil prices) and , (v) archives of data that has already been
computed, and (vi) experts (scientists, engineers) connected via pervasive col-
laborative portals.

The overall oil production process is autonomic in that the peers involved
automatically detect sub-optimal oil production behaviors at runtime and or-
chestrate interactions among themselves to correct this behavior. Further, the
detection and optimization process is achieved using policies and constraints
that minimize human intervention. Policies are used to discover, select, con-
figure, and invoke appropriate optimization services to determine optimal well
locations. For example, the choice of optimization service depends on the size
and nature of the reservoir. The SPSA algorithm is suited for larger reservoirs
with relatively smooth characteristics. In case of reservoirs with many randomly
distributed maxima and minima, the VFSA algorithm can be employed during
the initial optimization phase. Once convergence slows down, VFSA can be re-
placed by SPSA. Similarly, policies can also be used to manage the behavior of
the reservoir simulator, or may be defined to enable various optimizers to exe-
cute concurrently on dynamically acquired Grid resources, and select the best
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well location among these based on some metric (e.g., estimated revenue, time
or cost of completion).

Figure 3 illustrates the optimization of well locations using the VFSA and
SPSA optimization algorithms for two different scenarios. The well positions
plots (on the left in 3(a) and (b)) show the oil field and the positions of the wells.
Black circles represent fixed injection wells and a gray square at the bottom of the
plot is a fixed production well. The plots also show the sequence of guesses for the
position of the other production well returned by the optimization service (shown
by the lines connecting the light squares), and the corresponding normalized cost
value (plots on the right in 3(a) and (b)).

4.2 Autonomic Forest Fire Management Simulation

The autonomic forest fire simulation, composed of DSM (Data Space Manager),
CRM (Computational Resource Manager), Rothermel, WindModel, and GUI el-
ements, predicts the speed, direction and intensity of the fire front as the fire
propagates using static and dynamic environment and vegetation conditions.
DSM partitions the forest represented by a 2D data space into sub spaces based
on current system resources information provided by CRM. Under the circum-
stance of load imbalance, DSM re-partitions the data space. Rothermel generates
processes to simulate the fire spread on each subspace in parallel based on cur-
rent wind direction and intensity simulated by the WindModel, until no burning
cells remain. Experts interact with the above elements using the GUI element.

DSM CRM

Wind
Model

Rothermel

Functional port
<function name=``getSpaceState’’>
     <out name=``space’’ type=``tns:SpaceDes’’/>
</function>
Control port
addSensor(``getDirection’’, ``string’’);
addActuator(``setCellState’’,``cellState’’, ``string’’,``void’’);

Operation port  (behavior rule)
IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false);

Operation port  (behavior rule)
IF isSystemOverLoaded()==true THEN invoke graphAlgorith();

ELSE invoke greedyBlockAlgorithm();

Fig. 4. Examples of the port definition and rules

We use the Rothermel, DSM, and CRM as examples to illustrate the defini-
tion of the Accord functional, control and operational ports, as shown in Figure
4. Rothermel, for example, provides getSpaceState to expose space information
as part of its Functional Port, and provides the sensor getDirection to get
the fire spread direction and the actuator setCellState to modify the state of a
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Application workflow

Interaction
rules

Interaction
rules

Interaction

rules

Composition Manager

Interaction
rules

DSM CRM
Wind

Model
Rothermel

Fire Fighter

Model

Rule2:
IF cellChangeMsg is received

THEN  assign cellChangeMsg to input;
            invoke updateCell with input;

Rule1:
IF isFighterWork()==true

THEN send cellChangeMsg to Rothermel;

Rule3:
IF isSystemCongested()==true

THEN setThreshold(0.5); setThreshold(0.3);
Rule4:

IF isResourceBalanced()==false

THEN send loadMsg to DSM;

Fig. 5. Add a new component Fire Fighter Model and change the interaction relation-

ship between CRM and DSM

specified cell as part of its Control Port. The DSM and CRM receive rules to
manage their runtime behaviors through the Operation Port.

Behavior rules can be defined at compile time or at runtime and injected
into corresponding element managers to dynamically manage the computational
behaviors of elements. As illustrated in Figure 4, DSM dynamically selects an
appropriate algorithm based on the current system load and CRM will detect
load imbalance when the maximal difference among resource usage exceeds the
threshold according to the behavior rules shown.

The application workflow is decomposed by the Composition Manager into
interaction rules, which are injected into individual elements. Therefore, addi-
tion, deletion and replacement of elements can be achieved using corresponding
interaction rules. For example, a new element, Fire Fighter Model, modelling the
behaviors of the fire fighters, is added to the application as shown in Figure 5,
by inserting Rule1 into Fire Fighter Model and Rule2 into Rothermel. Similarly,
changing an interaction relationship can be achieved by replacing the existing
interaction rules with new rules. As shown in Figure 5, CRM dynamically de-
creases the frequency of notifications to DSM when the communication network
is congested based on Rule3 and Rule4.

5 Conclusion

In this paper, we presented Project AutoMate and described its key components.
Project AutoMate investigates solutions that are based on the strategies used by
biological systems to deal with similar challenges of complexity, dynamism, het-
erogeneity and uncertainty. This approach, referred to as Autonomic Computing,
aims at realizing systems and applications that are capable of managing (i.e.,
configuring, adapting, optimizing, protecting, healing) themselves. The overall
goal of Project AutoMate is to investigate conceptual models and implementa-
tion architectures that can enable the development and execution of such self-
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managing Grid applications. Specifically, it investigates programming models,
frameworks and middleware services that support the definition of autonomic
elements, the development of autonomic applications as the dynamic and oppor-
tunistic composition of these autonomic elements, and the policy, content and
context driven definition, execution and management of these applications. Two
case-study applications, autonomic oil reservoir optimization and autonomic for-
est fire management, enabled by AutoMate were also presented.
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