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Abstract. In this paper, we examine the feasibility of sound source localization 
(SSL) in a home environment, and explore its potential to support inference of 
communication activity between people. Motivated by recent research in 
pervasive computing that uses a variety of sensor modes to infer high-level 
activity, we are interested in exploring how the relatively simple information of 
SSL might contribute.  Our SSL system covers a significant portion of the 
public space in a realistic home setting by adapting traditional SSL algorithms 
developed for more highly-controlled lab environments. We describe 
engineering tradeoffs that result in a localization system with a fairly good 3D 
resolution. To help make design decisions for deploying a SSL system in a 
domestic environment, we provide a quantitative assessment of the accuracy 
and precision of our system. We also demonstrate how such a sensor system 
can provide a visualization to help humans infer activity in that space. Finally, 
we show preliminary results for automatic detection of face-to-face 
conversations. 

1   Introduction 

Since the early 1990’s much research effort has been focused on how to acquire, 
refine, and use location information [11]. Location-sensing systems rely on either 
explicit tagging of individuals or objects that facilitate tracking, or they leverage 
implicit characteristics.  Most implicit localization systems use computer vision to 
track users. We are interested in the use of sound source localization (SSL), 
techniques that extract the location of prominent sound events, in the home 
environment.  Sound events are often associated with human activities in the home, 
but few have exploited location of sound as context, particularly in a home 
environment.  

There are appropriate social concerns when sensing video and audio in the home 
environment. However, when the actual information retrieved is not the rich signal 
that a human would see or hear, there is potential for alleviating those concerns. We 
designed a SSL system to locate sound events in the environment using microphone 
arrays. The only information extracted in this case is the location of sound sources. 
Our system is based on a standard SSL algorithm which uses the time of delay 
method and PHAse Transform (PHAT) filtering in the frequency domain to locate 
sound sources [15]. In Section 3 we describe the engineering modification we made to 
this standard algorithm to make it function more robustly in the public space of a 
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realistic home setting. The system runs continuously (24/7) and feeds the detected 
sound events into a database that can be consulted by a variety of applications for the 
home.  For example, in other recent work, we have empirically established the link 
between face-to-face conversations in the home and availability to external 
interruptions from distant family members [18]. With this motivation, in this paper we 
wanted to explore whether temporal and spatial patterns of SSL events might be used 
to infer face-to-face conversations automatically.  

To demonstrate the feasibility and usefulness of a home-based SSL system, we will 
describe how we engineered a solution based on previously published algorithms, 
focusing our discussion on modifications that would happen in any home 
environment. We will demonstrate how good the SSL system is in practice through 
experimental validation of its accuracy and precision over a large public space in a 
home, including kitchen, dining and living room areas, but with a controlled sound 
source.  We will try to provide an honest appraisal of the SSL system we built, and 
attempt to discuss what advantages and disadvantages exist for this technology. 
Inferring activity, such as conversation, can be done by humans through visualization 
of the SSL data over relevant intervals of time. More automated forms of 
conversation detection will not be as robust, but we will show some initial promise in 
this area that leverages simple spatio-temporal heuristics. We believe this is a 
promising start, which points to more sophisticated activity recognition based on 
audio sensing. 

2   Motivations: Sound as an Implicit Location Source 

An interesting distinction between location-sensing technologies is the reliance on 
explicit means of marking the people or objects to track.  We give a brief overview of 
location solutions, divided between those that require explicit tagging and those that 
function based on more implicit means of identifying tracked objects or people. 

2.1   Explicit Location Systems 

Many explicit localization systems, requiring users to wear extra passive tags or 
active devices, have been developed since the 1990’s. Hightower and Borriello’s 
recent taxonomy of current location systems mainly focuses on explicit localization 
systems [11]. The Active Badge system, one of the first successful indoor proximity 
location systems, required users to wear a badge that emitted infrared ID information 
giving zone level location information [9]. With the improved Active Bat system, 
users carried a 5cm by 3cm by 2cm Bat that received radio information and emitted 
an ultrasonic signal to ceiling-mounted receivers. This provided location accuracy of 
9cm with 95% reliability [10]. The Cricket location system requires user to host the 
Listener on a laptop or PDA and obtains the location granularity of 4 by 4 feet [19]. 
However, these systems are generally expensive to deploy and maintain. 

We designed our own indoor location service using passive RFID. Users wear 
passive RFID tags which are queried by RFID readers at fixed locations to obtain a 
unique ID [1]. RFID tags are small and passive, and hence, easy to carry and do not 
require batteries. However, instrumenting an environment with enough readers to 
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obtain decent location information can be expensive. An alternative method is to tag 
the environment and place the RFID reader on a person, as suggested by the iGlove 
used in the SHARP project at Intel Research [14]. Although the iGlove is used to 
detect hand-object proximity in order to infer activities of daily living (ADLs), this 
approach also infers locations. 

By taking advantage of existing radio beacon infrastructure, such as WiFi access 
points, wireless positioning systems use the signal strength of access points received 
by a wireless network card to determine the location of mobile users with an accuracy 
of 1-3 meters [4]. This technique has been explored at length in the mobile and 
ubiquitous computing communities and has been used on several campuses such as 
the Active Campus project at UCSD and CMUSKY project at CMU.  

For outdoor localization, users can carry a GPS receiver and get the global position 
at the accuracy of 1-5m. Many projects use GPS as the primary outdoor positioning 
system, including Lancaster’s Guide [6]. Intel Research’s Place Lab effort leverages 
different methods of localization including GPS, WiFi, Bluetooth and GSM cell 
towers to provide increasingly ubiquitous location services [13].  

Explicit systems generally tend to be more robust than implicit systems, and almost 
always provide identification information (e.g., unique tag ID) in addition to location. 
In more formal environments such as the office, the wearing of an explicit tag or 
badge can be mandated. However, our experience deploying a passive RFID in a 
home laboratory showed that one important reason why the system was not 
extensively used is that some users forget to wear or even lost their tags. Another 
drawback of explicit location systems from the user’s perspective is the size and 
weight of the tag or device they must carry. Many devices require a certain amount of 
local computation or signaling capability.  GPS receivers need a processor to compute 
their location after receiving satellite signals, while beacons must expend enough 
energy to be detected. The requirement for computation and/or broadcast power adds 
to the size and weight of the device.  

2.2   Implicit Location Systems 

These disadvantages of explicit location tracking techniques motivate others to 
consider more implicit forms of location sensing. Here, technologies take advantage 
of natural characteristics of the users to sense their location, including visual cues, 
weight, body heat or audio signals. Implicit tracking does not require users to wear 
tags or carry devices, which pushes the tracking technology, for better or worse, into 
the background.  

Motion detectors and floor mats open supermarket doors, and motion sensing flood 
lights and sound activated night-lights ease light pollution while still providing 
illumination when needed. Although these simple appliances do not track the location 
of specific users, they implicitly know the location of whoever has activated them for 
a brief period of time.  Simple sensors (motion detectors, contact switches, 
accelerometers) can be spread throughout the fixed infrastructure of a home (walls, 
cabinets, etc.), and the data from these sensors can be used to infer where human 
activity takes place [23]. 

With the development of artificial intelligence and increasing computing power, 
more perception technologies are used to support a natural interaction with the 
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environment. Vision-based tracking and SSL are two important location strategies 
that have the ability to monitor large spatial areas passively with only modest amounts 
of installed hardware. In contrast to motion detectors and contact-based floor sensors, 
they provide greater resolution and discrimination capabilities. 

Techniques for tracking people using multiple cameras treat the body holistically 
as a single moving target [8], often using a "blob" model to describe the targets’ 
appearance. In a home setting, multiple users can be tracked in real-time using ceiling 
or wall-mounted cameras. The region corresponding to each user in each of the 
camera images is described as a blob of pixels, and it can be segmented from the 
background image using a variety of statistical methods [8, 17, 26]. By triangulating 
on the blob’s centroid in two or more calibrated cameras, the location of the user can 
be estimated in 3-D. In the EasyLiving project at Microsoft Research, the blob’s 
location was updated at 1-3Hz in a room environment with two cameras for up to 3 
users. Vision requires significant processing power and broadband networking 
infrastructure in order to get satisfactory real time location updates [17].  

Passive sound source localization provides another natural tracking method that 
uses difference in time of flight from a sound source to a microphone array. With 
computer audio processing, sound source location can determine the location of sound 
events in 3-D space. We will discuss SSL in more detail in Section 3. 

Because users do not need to carry tags or devices, these systems allow for implicit 
interaction, but may not provide identification information. With the help of face 
recognition, fingerprint, or voiceprint recognition, computer perception based location 
systems can provide identity information in addition to location. 

2.3   Implicit Vision-Based Tracking Versus Sound Source Localization 

Vision-based tracking and SSL are potentially more accurate than other simple 
implicit location systems, such as contact based smart mats or motion detectors.  
Computer vision systems usually use multiple cameras to circumvent visual obstacles 
or provide continuous tracking for moving objects over multiple rooms. Vision 
systems require significant bandwidth and processing power, as a typical color 
camera with 320x160 resolution at 10 frames per second generates about 1.54 Mbyte 
of data per second.   

In comparison, the data throughput of a microphone array is significantly less than 
a camera system. One microphone generates about 88.2 KByte of data per second for 
CD quality sound with 16 bit sampling resolution. Because of the relatively low 
bandwidth, data collection and processing of an array of 16 to 32 microphones can be 
easily performed on an Intel PIII-class processor. Because of lower bandwidth 
requirement of audio, projects like “Listenin” report the ability to monitor remote 
environments though a wireless IP connection in real time [22].  

Current vision-based location tracking systems suffer from variance in 
circumstantial light, color, geometric changes of the scene and motion patterns in the 
view, while sound source localization systems suffer from environmental noise. A 
sound localization system can more easily detect activities that have specific sound 
features such as a conversation or watching TV, which might be difficult to detect  
 
 



 Using Sound Source Localization in a Home Environment 23 

 

using computer vision alone. However, sound source localization also has obvious 
disadvantages. Only activities which generate sounds (which may be intermittent) can 
be detected by the system.  

An active research community is addressing the problem of fusing audio and video 
cues in solving various tasks such as speaker detection [20] and human tracking [5]. 
For example, the initial localization of a speaker using SSL can be refined through the 
use of visual tracking [25].  

2.4   Sound Source Location as Important Source of Context 

One important context from the audio is the capability to detect the sound event’s 
location with some accuracy.  We can find a cordless phone when it rings based 
solely on sound source location. Among the activities which take place in the home, 
identified by Venkatesh [24], many are connected with sound events, such as when 
we converse, watch TV, listen to the radio, talk on the phone, walk across the floor, 
move chairs to sit down for dinner, set plates on the dinning table, cook dinner, wash 
dishes, use utensils and chew during a meal. 

In domestic environments, different activities are often conducted in particular 
locations. Leveraging this activity localization, a semi-automated method can be used 
to divide the room into activity zones and provide interaction based on status with 
regard to different zones [16]. Similarly, a previous study suggests availability for 
interruption from outside the home is strongly correlated to activities within the 
kitchen [18].  For instance, individuals preparing food at the kitchen counter indicated 
they would be accessible, but not available when helping a child with homework at 
the kitchen table.  Sensing systems with only room location and presence context do 
not provide enough information to distinguish these differing states.  SSL could 
provide precise location and sound event data to help a remote family member 
distinguish the different activities, without revealing the actual content or identities.   

If the system observes sound events from the kitchen and stove for thirty minutes, 
followed by sound events surrounding the dinning room table, it can make a good 
prediction that a meal is occurring. Thus detecting kitchen activities, such as cooking 
and washing dishes etc., will have promise in predicting availability for inter-home 
communication. Also if you analyze the height of the sound events, footsteps occur at 
floor level, sound events from the table may indicate that an object was dropped, 
while conversational noises are likely to be located at seated or standing heights.  

SSL has potential to summarize activities that generate sound events over a period 
of time and providing answers to questions like: When did we have dinner yesterday? 
Did I cook yesterday? The update frequency of sound event location is fast enough to 
recognize some patterns of sound event sequences, like the switching between two 
persons in a conversation.  Sound events can be used to determine the status of the 
users: Is the user in a conversation? It provides substantial information towards high 
level context such as interruptability determination in an office environment [12].  

Despite the potential for sound location to support relevant activity context, there is 
little to no research designed to investigate the relationship between sound events and 
household activity. 
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3   Sound Source Localization in the Home 

Sound Source Localization (SSL) systems determine the location of sound sources 
based on the audio signals received by an array of microphones at different known 
positions in the environment. In this section, we first summarize challenges for sound 
source localization in home environments. Then, we present the improvements to the 
standard PHAse Transform (PHAT) SSL algorithm as well as the design decisions we 
implemented to overcome these challenges. Finally, we report on the performance of 
our SSL system. 

3.1   Challenges to Deploy SSL System in Domestic Environment 

Sound source localization research started many decades ago; however, there exists 
no general commercial SSL system. Based on current SSL research literature [7] and 
our own experiences [3], the main challenges for deploying SSL systems in domestic 
environment are:  

1. Background Noise. The background noise in home environments can 
include traffic noise, noise from household appliances and heating and air 
conditioners. For example, noise from the microwave will pose a problem 
for localizing the person talking at the same time.  

2. Reverberation. (Echoes)  Reverberation in the home is difficult to model 
and can lead to corrupted location predictions when indirect (bounced) sound 
paths interfere with direct sound paths.  

3. Broadbandness. The speech signals and sounds generated from household 
activities are broadband signals. The failure of narrowband signal-processing 
algorithms, applied in radar/sonar systems, requires the use of more 
complicated processing algorithms. 

4. Intermittency & Movement. The sound to be detected is usually 
intermittent and non-stationary. This makes it hard to apply localization 
techniques that use stationery source assumptions, such as adaptive filtering 
localization [2]. Sound generated by a person tends to be fairly directional, 
since the acoustic radiation in some directions is blocked by the human body. 

5. Multiple Simultaneous Sound Sources. When faced with multiple 
simultaneous sound sources, there would be multiple peaks in correlation 
between microphones. This decreases credibility of computed time of delay 
and increases location errors.  

Despite these general challenges, our research system shows that it is feasible and 
useful to start investigating how sound source location can help to locate human 
generated sound events that can be used to infer activity both manually and 
automatically. 

3.2   Fundamentals of Passive Sound Localization 

SSL systems can be traced back to earlier active radar and sonar localization systems. 
An active localization system sends out preset signals to the target and compares it 
with the echo signal in order to locate the target, similar to how a bat locates its prey 
using ultrasonic pings. In passive localization, the system only receives signals 
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generated by the targets, which are mostly human generated sound signal in our case. 
If a user wears an explicit tag (such as the Active Bat ultrasonic badge), the receiver 
can compute the location with high accuracy because of the high signal to noise ratio 
(SNR) in the narrow frequency range. However, for the implicit sound sources in a 
domestic environment we intend to explore, the signal is often noisy and with broader 
frequency ranges.  

Different effective algorithms with an array of microphones are used in sound 
source localization. They can be divided into three main categories: steered-
beamformer based locators; high-resolution spectral estimation based locators; and 
Time-of-Delay based locators [7]. Most current sound source location systems are 
based on computing Time-of-Delay using PHAT-based filtering, which is simple, 
effective and suitable for real-time localization in most environments. The Time-of-
Delay locating process is divided into two steps:  

• computing time delay estimation for each pair of microphones; and  
• searching for the location of the sound source.  

Different systems vary in the geometric deployment of sensors, pairing up, filtering 
and space-searching strategies. We will explain the design of our SSL system after a 
simple introduction to PHAT and correlation-based time of delay computations. More 
details are available in [3]. 

 The incoming signal x received at microphone i can be modeled as 
        )()()( tntstx iiii +−= τα                                         (1) 

where: )( ii ts τ−  is the signal delay; )(tni is the noise; iα  is the attenuation 

factor for microphone i. For every pair of microphones, we compute the correlation. 
This is usually done in the frequency domain in order to save time. However, because 
of noise and reverberation in the environment, some weight functions in the frequency 
domain are applied to enhance the quality of the estimation, such as the Phase 
Transform (PHAT), or Roth Processor [15, 21]. The general cross correlation with the 
PHAT filter is equation 2, where the first item is the frequency weighting filter. 
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 Conj is the complex conjugation function, and X1(f) and X2(f) are the Fourier 
transforms of x1(t) and x2(t). Ideally the maximum of equation (2) indicates the time 
offset of arrivals of the two signals if there is no noise. In practice, we compute the 
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3.3   Peak Weight-Based SSL and Other Design Decisions 

We deployed our sound source localization system in an actual home setting and 
improved the location evaluation function to perform well in that environment. Figure 
1 shows the floor map of the target area. 
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Fig. 1. 2D Floor map of covered space in the first floor with the primary “living room” 
setting(Quad 1,2,3,4) and “Kitchen” setting(Quad 1’,2’,3’,4’). The only difference between the 
two settings is the location of the quad labeled 2 and 2’. Each Quad has 4 microphones 

Deploying a working SSL system in a home environment introduces several 
challenges that many researchers do not consider when testing in a controlled 
laboratory environment. Below is a discussion of those challenges, and how we 
improved our system in light of those factors in the house where we deploy our 
system. 

 
1) The house is close to a busy street and the noise level is variable throughout the 

day, so we dynamically update the noise threshold with equation (3) in 
processing before actual localization to ignore street noise.  

ttt EnergyThresholdThreshold *)1(*1 αα −+=+           (3) 

Energyt is the current sound energy and α is the inertial factor.  
2) Our target area consists of a living room, dining room and kitchen. To cover 

the large space 16 microphones were used. The microphones were organized 
into 4 separate Quads (set of 4 microphones in a rectangle pattern). By only 
computing time of delay between microphones in the same Quad, it effectively 
limits the peak search range and rules out false delays. 

3) To fully utilize the information from each Quad, we correlate sound signals 
between all six pair-wise combinations of the four microphones. 

4) Quads which are closer to the sound source make better location predictions. 
Because of the high signal to noise ratio, a Quad selection strategy is needed. 
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Environmental factors such as noise and reverberation, etc., might corrupt the 
signal and generate maximum at the time other than true time of delay in equation (2). 
In addition to the above measures, we also found it is necessary to reflect the 
reliability of each Time -of-Delay estimation into the final localization goal function.  
We use the ratio of the second peak with the maximum peak in equation (4) to convey 
the reliability of computed Time-of-Delays. Specifically, we define the peak-weight 
of ith pair of microphones to be: 

PeakMax peak Second V/ V-1=iW                  (4) 

We discard the data items whose peak-weights ( iW ) are less than some constant, 

chosen to filter about 60-80% of the measurements. In a home environment with a 
signal to noise ratio between 5 and 15 db we experimentally determined this constant 
to be 0.3. 

In the second phase of searching for the sound source location, we use steepest 
gradient descent method in the 3D space during the process of minimizing the 
evaluation function. The final evaluation function E of each potential location is 

calculated by equation (5). Note that we consider the peak weight ( iW ) in the final 

evaluation function.   
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TDOAi is the measured time of delay. TDOAExp
i for a potential location is 

computed according to the distance to the ith pair of microphones divided by speed of 
sound. During the search for the location of a sound event, we added more initial 
searching points from the more probable sound source locations, like the kitchen area, 
dining and living room tables in addition to the previous detected sound source 
locations. By seeding the initial search points in this manner, we increase the 
responsiveness of the system to common sound events.  

3.4   System Design in a Home Environment 

Although our system design is not sophisticated enough to work in different 
environments, it does work well in our target home. The dimensions of the L-shaped 
area are shown in Figure 1, and the overall area is about 38 square meters. The 
environmental noise ranges between 60-70db during the day, which is probably more 
noisy than a typical residential house setting. Our home lab is close to a busy street 
with much traffic.  

Figure 2 shows the pictures of microphones mounted in picture frames and ceiling 
tiles, each of which has exactly 4 microphones and is called a Quad.  The microphone 
arrays are deployed in the connected areas including the kitchen, living room and 
dining room on the ground floor (see Figure 1).  We are using 16 omni-directional 
pre-amplified microphones (cost: 10 USD each) that receive audio signals in the 20Hz 
to 16KHz range. For the initial primary “living room” placement of microphone 
quads, shown as 1,2,3,4 in Figure 1, our goal was to cover the whole space equally 
well. For that setting, one Quad is in the ceiling of living room, two are on the front 
wall and one is at the corner of the dining room that faces the dining room and 
kitchen.  
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Fig. 2. (a)-(d) Microphone Quads, each has 4 microphones. (e) Single microphone with a 
quarter. (f) PTZ camera driven by detected sound location events 

3.5 System Performance 

In our home environment the current system can locate sound events from talking, 
footsteps, putting glasses on the table, chewing food, and clashes of silverware with 
dishes. For continuous talking that faces one of the quad arrays, we estimate the 
update rate as 1-5 seconds per reading. The system is especially responsive to crisp 
sound events such as clicking, eating, sniffing, or putting a backpack on a table. These 
crisp sound events generate high SNR signal which will help find correct Time-of-
Delays between microphones. 

 

Fig. 3. Visualization of measured sound source location data at 1 meter by 1 meter grid for two 
different microphone Quad settings at heights of 80 and 160 cm 
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Table 1. The performance of SSL system for different settings with 25 measurements at each 
location. ERR is the average deviation with the true sound source location. STD is the standard 
deviation for 25 measurements 

 
Grid 

 Location 
Living room 

160cm 
Living room 

80cm 
Kitchen 
160cm 

Kitchen 
80cm 

 
     # 

     x      y ERR STD ERR STD ERR STD ERR STD 

1  100 -400 19 16 27 34 25 73 72 60 
2  100 -300 2 5 8 11 23 19 35 43 
3  100 -200 14 7 4 24 15 12 30 43 
4  100 -100 5 6 17 13 13 13 16 38 
5  100 0 5 23 13 16 6 23 7 22 
6  100 100 10 23 20 28 20 38 19 37 
7  100 200 14 10 8 20 8 9 9 30 
8  100 300 18 29 4 12 6 7 2 39 
9  200 300 7 29 14 18 3 12 10 15 

10  200 200 17 10 15 23 10 6 7 13 
11  200 100 4 15 7 8 10 10 7 8 
12  200 0 8 16 8 9 14 22 7 18 
13  200 -100 9 17 6 11 6 10 4 12 
14  200 -200 6 8 7 4 8 10 7 21 
15  200 -300 7 19 6 13 12 31 14 46 
16  200 -400 12 32 6 16 21 46 32 50 
17  300 -400 29 71 14 72 24 65 24 70 
18  300 -300 8 25 5 22 7 41 7 50 
19  300 -200 45 57 9 25 4 25 8 40 
20  300 -100 6 15 15 19 9 13 3 19 
21  300 0 11 24 13 30 7 20 20 24 
22  300 100 12 45 19 22 14 19 33 43 
23  300 200 18 43 6 18 7 12 11 22 
24  300 300 3 56 31 46 10 14 9 17 
25  400 300 25 67 32 57 10 33 23 38 
26  400 200 40 104 11 31 9 34 12 33 

To test the accuracy and precision of our deployed SSL system, we created a 1 
meter by 1 meter grid on the floor of the kitchen/dining/living room area and 
systematically placed a controlled sound source at two different heights (80cm, 
approximating table height, and 160cm, approximating standing height), for a total of 
26 data collection points.  At each sample point, we collected 25 independent SSL 
readings from a speaker on a tripod producing a crisp, clicking sound.1 For the 
primary “living room” setting, we use microphone quad number 1, 2, 3 and 4 shown 
in Figure 1. In addition, we have tested the performance of a “kitchen” setting which 
includes microphone quad number 1’, 2’, 3’ and 4’ in Figure 1. 

                                                           
1 This sound source was selected to allow for quick collection of data at the grid points. Using a 

more natural sound source, such as a recording of a person talking would not, in our opinion, 
change the results of the accuracy and precision readings, but would have greatly increased 
the time required for data collection. 
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The data collected is summarized in Table 1. Figure 3 shows a top-view 
visualization of the data collected to give a better at-a-glance demonstration of the 
accuracy and precision of our SSL system. For each grid point, a circle indicates the 
accuracy (how far away the center is to the grid point) and precision (radius of circle).  
We show this visualization at both heights (80cm and 160cm) for each setting of the 
microphone quads. Among all the measurements in our experiments, the mean of 
deviations from ground truth location is 13.5cm and 95% of the deviations are less 
than 33cm.  We use the standard error of the 25 measurements to represent the 
accuracy of the system.  Average standard error of all locations is 27.3cm and 95% of 
them are less than 68cm.  

The experimental data verifies that to sense an area with less error and higher 
resolution, we need to put more microphones around that area. For example, in order 
to detect sound events better in the kitchen area, we placed a microphone quad in the 
kitchen ceiling.  By doing so, we can enhance the SNRs of the signal and reduce the 
impact of reverberation.  We can also see that between the height of 80cm and 160cm 
there is no systematically definable performance difference, though there are 
noticeable differences. 

In general, our results demonstrate that the 4 microphone quad arrays give good 
coverage of this large area, and can provide data that can help determine activity in 
this space, as we will demonstrate next.  This SSL system will help us to 
disambiguate the placement of relatively stationary or slow moving sound sources.  

4   Using SSL to Detect Conversations 

An initial application, developed to test how well the SSL technology works, drove a 
pan-tilt-zoom camera to show the area where sound was detected. While this kind of 
application might be useful for remote monitoring of meetings or for childcare, it was 
never intended to be the motivating application for our work. The advantages of the 
SSL sensing system we have created is that it covers a fairly large portion of the 
public living space of a home (kitchen, dining and living rooms) and offers 
reasonably good accuracy and precision for 3D location without requiring any explicit 
tagging.  The SSL system also only records the location of the single loudest sound 
source every few seconds, without any other identifying characteristics being 
archived.  Given the justifiable concerns with sensing and privacy in the home, this is 
a good feature of the sensor. The main disadvantage of this sensor is that location 
readings from the system are sporadic, with no guarantee of providing data at a fixed 
data rate. The same sound might not be consistently detected over time because of 
other environmental noise that cannot be controlled.  

Given these advantages and disadvantages, we wanted to explore a use of the SSL 
technology that would play to its strengths. Using it for any real-time context-aware 
application would be unwise, given the sporadic nature of the data.  However, it 
would be useful for near-term decision making, as the pattern of sounds in a home 
should reveal some important characteristics of activity.  Previous research on 
communication support has revealed the potential for using near-term knowledge of 
home activity to determine whether the household is amenable to an outside 
interruption, such as an external family member phoning [18].  While the general 
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capability of determining availability is so subjective as to be impossible to 
mechanize, this prior result does give some direction for applying our SSL 
technology. One specific finding in that work suggests that detection of face-to-face 
conversations, which we define as a conversation being held in the same room of a 
house, is a good first step. 

We address this problem of conversation detection in two ways. First, we look at 
ways in which the visualization of SSL data over a physical space might inspire a 
human to make correct inferences about activity, whether looking for conversations or 
other patterns. Second, we look to implement simple spatial and temporal heuristics 
that might detect conversational patterns in a time series of SSL data. We present both 
of these uses of SSL in this section.  

4.1   Visualizing SSL Data  

In a domestic environment, the owner of a home might be interested in viewing what 
activities happened in his house yesterday morning, see a summary of activity over 
longer periods, or remotely access the house of another trusting friend or family 
member. We developed a sound event map to facilitate this. In the sound localization 
system described earlier, all the sound location data with timestamps are stored into a 
database server.  The sound event map application connects to the server and retrieves 
the sound location history. Because each sound source location event consists of 16 
bytes (X,Y,Z,Timestamp) and events detected are at most a few readings per second, 
the sound event map application requires very low bandwidth, meaning this 
information could be quickly transmitted outside of the home as needed. 

The application, shown in Figure 4, allows a 3D manipulation of the floor plan, 
with SSL data points distributed throughout the 3D virtual space. It also supports top 
view, front view and lateral view to better determine what is happening in a particular 
area. We are assuming the user of the application is familiar with the space, so even if 
there is not very detailed information about furniture, and certainly without 
knowledge of who might be in the room at any given time, the distribution of sound 
events can still be meaningful.  

The user can select a time interval of interest (e.g., 7:30am to 10:00am yesterday 
morning) or select an area of interest - the system automatically determines timeslots 
where activity in the chosen area (e.g., kitchen, dining table) occurred. Within a 
displayed interval, SSL events are colored from green (least recent) to red (most 
recent) depending upon their age. Another mode provides a form of replay so that the 
viewer can see a soundscape unfold over time, under their control. During the 
automatic replay, the current event is highlighted with the largest size dot, while the 
five previous events are rendered with smaller dots.   

Though we have limited use of this application and cannot, therefore, report on 
how accurately a human can interpret activity in a familiar space using SSL data 
alone, our preliminary experiences reveals it is effective for summarizing activity 
over a reasonable period of time, usually from several minutes to several hours in 
duration. With this limited visualization, for example, it is possible to detect a moving 
sound source or alternating sound sources, as you would expect in a conversation.  It 
is also possible to visualize and understand activity around special places, like a 
dining table. This visualization motivated us to look at more automated ways to detect 
these activities.  
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Fig. 4. Sound Event Map application, showing sound events (red/green dots) for a day in the 
home 

4.2   Distinguishing Two-Person Conversations from Single-Person Talking 

As previously discussed, the sound location context is usually associated with human 
activity. Certain household activities are usually linked with specific locations in the 
home, such as dining, cooking and watching TV.  Currently, users examining the data 
we collect using the sound event map are able to recognize dinning activities 
manually by looking for events around the dining room table. Kitchen related 
activities are also easy to recognize.  While this general direction for activity 
recognition is an interesting one to pursue, we focus on a simpler kind of activity, 
specifically how to differentiate between a single person talking and a two-person, 
face-to-face conversation.  

To demonstrate that the data from our SSL system can differentiate between these 
two situations, we recorded 10 two-person conversations and 10 people talking over a 
telephone. These activities were distributed over the kitchen, dining and living room 
areas covered by the SSL system (using 1, 2, 3, 4 microphone quad configuration in 
Figure 1). The distances between the two people in conversation ranged from 0.5m to 
5m. For a single person talking on the phone, we recorded 5 situations in which the 
phone conversation is relatively stationary (person sitting, but able to sway less than 
1m) and 5 situations in which the user paced around the house (representing a 
cordless handset). Three typical cases, with corresponding SSL data are visualized in 
Figure 5. Each black point in the graph represents a detected sound event. To better 
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visualize the timestamp properties, we use both darkness and size to represent the age 
of each dot. The more recent events are drawn in larger sizes as well as darker colors. 
Each activity lasted between 2-5 minutes.  

 

 

Fig. 5. Three talking scenarios. The darkness and size of dots represent the age of sound events 

Table 2. The clustering of 10 two-person conversations, 5 one –person talking cases at fixed 
location and 5 single-person talking cases while moving around 

 
 

Cases 
Total number  
of readings 

Number of 
flip-flops 

Distance between 
clusters(cm) 

Classified as  
conversation? 

2-person  1 79 23 191 Yes 
2-person  2 29 16 160 Yes 
2-person  3 32 12 202 Yes 
2-person  4 47 15 118 Yes 
2-person  5 59 17 120 Yes 
2-person  6 44 16 440 Yes 
2-person  7 44 12 258 Yes 
2-person  8 51 17 150 Yes 
2-person  9 44 12 134 Yes 
2-person 10 79 23 191 Yes 

1-person mv 1 32 2 340 No 
1-person mv 2 32 5 118 No 
1-person mv 3 43 2 322 No 
1-person mv 4 22 8 201 Yes 
1-person mv 5 35 7 283 No 
1-person fix  6 48 22 69 No 
1-person fix  7 34 4 101 No 
1-person fix  8 31 12 97 No 
1-person fix  9 39 18 61 No 
1-person fix 10 36 19 64 Yes 
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To detect two-person conversations, we used a K-means clustering algorithm to 
separate the data points into two clusters. Then we counted the frequency of the back 
and forth between these two clusters with their timestamp information.  

Our proof-of-concept algorithm uses the following two heuristic rules: 

1. If (# of flip-flops between two clusters/ # all reading>R1 and distance < D)  
it is a conversation; 

2. If (# of flip-flops between two clusters/ # all reading> R2 and distance >= D) 
it is a conversation; 

3. else 
it is a single person talking; 

Before our experiment, we assigned the parameters R1=0.5; R2=0.25; and D = 
100cm. The meaning of these parameters is that when sound clusters are closer than 
D=100cm, we require 50% of the sound events to represent the flip-flop between the 
clusters before the activity is judged to be a conversation. When the sound clusters are 
farther apart than D=100 cm, then we only require 25% of the sound events to 
represent the flip-flop before the activity is judged to be a conversation. 

When two persons are having a conversation, they will form two clusters of data 
points in the space and there should be sufficient flip-flopping between these two 
clusters. However, for a single-person talking around a fixed location, detected 
location events vary randomly around the true location. We choose D=100 cm to be 
larger than the maximum distance traveled by a swaying person plus sensing error. 

The results in Table 2 show that all 10 two-person conversations were correctly 
categorized. Four of our five single-person fixed location cases and single-person 
moving cases were correctly categorized, while one of each was incorrectly judged to 
be a two-person conversation, giving our proof-of-concept algorithm an accuracy rate 
of 90% over all 20 cases.    

We must point out that we are only using simple heuristic rules to distinguish 
conversations between two-person and a single-person talking on the phone in the 
home environment. More sophisticated linear dynamic models could be used to 
recognize patterns and provide inference for a dynamic number of people. But this 
work demonstrates the context information inherent within sound source location 
events, highlighting the potential for more sophisticated inference algorithms. 

5   Conclusions and Future Work 

In this paper we summarized two different categories of localization systems, explicit 
and implicit, and pointed out that implicit localization systems have advantages for 
deployment in a ubiquitous computing environment. By adapting current sound 
source localization (SSL) algorithms, we built a sensor system in a realistic home 
setting. We demonstrate the accuracy and precision of this 3D localization 
technology, resulting in a system that is accurate to within 13.5cm with an expected 
standard error of 27.3cm in average in a realistic home setting.  

While this sensor system alone certainly has its limitations, based on the latency 
and potentially sporadic distribution of data for a noisy environment, the simplicity of 
the sensor (from the human perspective) and its socially appealing lack of archived 
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rich data, motivated us to explore what value it might have on its own.  We explored 
solutions that would use time series of SSL data points to help a human infer (through 
visualization) or be automatically informed of (through pattern recognition) the 
likelihood of human conversations in the home space. By capturing the sound event 
locations during conversation, we can dynamically cluster the points according to the 
number of people in the conversation. With more sophisticated modeling of 
conversations, we might also find interesting patterns such as who is dominating the 
conversation. Both as a single sensor modality, and in concert with other sensed data, 
SSL shows promise for the complex and compelling problem of automated domestic 
activity recognition.  
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