u-Photo: Interacting with Pervasive Services
Using Digital Still Images

Genta Suzuki!, Shun Aoki!, Takeshi Iwamoto!, Daisuke Maruyama',

Takuya Koda', Naohiko Kohtake', Kazunori Takashio®,
and Hideyuki Tokuda'-?

1 Graduate School of Media and Governance, Keio University
2 Faculty of Environmental Information, Keio University,
5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
{genta, shunaoki, iwaiwa, marudai, acky, nao, kaz, hxt}@ht.sfc.keio.ac.jp
http://wuw.ht.sfc.keio.ac.jp/

Abstract. This paper presents u-Photo which is an interactive digital
still image including information of pervasive services associated with
networked appliances and sensors in pervasive computing environment.
U-Photo Tools can generate a u-Photo and provide methods for discov-
ering contextual information about these pervasive services. Users can
easily find out this information through the metaphor of ‘taking a photo-
graph’; the users use u-Photo by clicking on a physical entity in a digital
still image. In addition, u-Photo makes managing information more ef-
ficient because the still image has embedded visual information. Using
u-Photo and u-Photo Tools, we conducted various demonstrations and
performed usability tests. The results of these tests show that u-Photo
Tools are easy to learn. We also present that the time that expert u-
Photo users take to find the object in piles of u-Photos is shorter than
the time it take to find the object in piles of text-based descriptions.

1 Introduction

A principal theme of pervasive computing is the interaction between users and
pervasive services. Networked devices such as networked appliances, networked
sensors, and other computing-enabled everyday objects are becoming more com-
mon. This means that there are not only increasing number of devices but also
incleasing the pervasive services associated with these devices.

The increase of these pervasive services now requires intuitive ways to dis-
cover and use them. Jini [§], and UPnP [I4] provide methods to discover net-
worked appliances’ services. Directory services [4][2I] also supply information
about networked services. However, they don’t return enough information about
the services. Users need to know not only the virtual and networked informa-
tion (e.g. host names, URLs, types of services) but also the links between the
services’ physical entities and virtual information because the pervasive services
actuate or sense the physical world. Suppose that there are multiple printers in
a location. How can visitors tell the network name of a specific printer? It is

H.W. Gellersen et al. (Eds.): PERVASIVE 2005, LNCS 3468, pp. 190-207 2005.
© Springer-Verlag Berlin Heidelberg 2005

u-Photo: Interacting with Pervasive Services 191

inconvenient if systems that supply information about the services do not show
the links between network names and physical entities of the printers.

Our approach uses interactive, digital still images for intuitive service dis-
covery and use. U-Photo is a digital still image with information of pervasive
services. U-Photo uses the simple action of taking a photograph to discover per-
vasive services and then uses image-based intuitive GUI to use the services. Users
can interact with the services anytime as long as they have the u-Photos.

In this paper, we discuss the basic concept of u-Photo, the design of u-Photo
Tools for using of u-Photo, and experiments based on the prototype. The rest
of this paper is structured as follows: Section 2 describes the challenges faced
in our work. In Section 3, we describe the basic concept of u-Photo. Section
4 presents the design of u-Photo media and u-Photo Tools. Details about the
prototype appear in Section 5. Section 6 describes the prototype experiments,
which included usability tests. Section 7 presents a discussion about u-Photo.
We review related work in Section 8. Finally, we present our conclusions in
Section 9.

2 Pervasive Services

2.1 Classification of Pervasive Services

We classify our target pervasive services into following three groups: environ-
mental context sensing, appliance control, and personalization.

Environmental context sensing services acquire sensor values from networked
sensors. In pervasive computing environment, sensors such as ultrasound sensor,
infrared ray sensor, and RF readers have network connectivity. Furthermore,
networked small sensor units [3][7] have been developed and they build sensor
networks [6]. These sensors will be embedded everywhere in the environment and
provide sensing services. We can acquire context information of physical world
such as temperature, and brightness from these services. For instance, a user can
monitor his/her room temperature from a different location. Since sensors have
limited sensing areas, it is important for users to know the locations of sensors
and sensing areas.

Appliance control services control networked appliances. A number of net-
worked appliances have already released (e.g., air conditioners, microwave ovens,
refrigerators, and lights) and it seems that all appliances will be networked in
pervasive computing environment. We can control these appliances from mo-
bile devices, PCs, and other input devices. One example of appliance control is
controlling home appliances from the user’s office.

Personalization services allow control of arbitrary appliances as if they are
ours. Needs for personalization services arise when nomadic users want to repro-
duce a service to a different device [9)[I1][I7]. Transferring media such as videos
and audios is an example of a personalization service. In other words, we can say
these personalization services are roaming user’s tasks. Personalization service
also supports applying personal settings to unfamiliar appliances. For example,
the temperature at which a user feels comfortable, can be applied to each air

192

G. Suzuki et al.

Service Discovery

Confirmation

~——_comoie)

Fig. 1. User operation cycle of pervasive services

Browsing Usage

conditioner of rooms he/she visits. Personalization services works in two steps:
first, users mark off settings and execution states of appliances, and reproduce
them in another location.

2.2

User Operation Cycle

When using pervasive services, there is a operation cycle of Service Discovery,
Browsing Usage, Controlling, and Confirmation shown in Fig[ll

2.3

Service Discovery

At first, a user has to discover the services that he/she wants. This operation
is classified to two ways. The first classification is by function. For example,
the user would look up a service as “What’s the temperature here?” The
second classification is by actual device (e.g., “Are there any air condition-
ers near here?”). In both cases, since the devices have limited actuation or
sensing areas, the users have to know the links between the services’ physical
and virtual information.

Browsing Usage

After the service discovery, the user needs to know how to get data from the
sensors and control the appliances. In other words, this operation involves
finding out how to use the pervasive services. In this case, there are the
following two types of information: information for connecting to the service
and information about command-to-action binding. The former includes the
IP address of the device, the port number, or other information to specify
service in the network. Information such as clicking the “ON” button means
turning on TV is included in the latter.

Controlling

After browsing the usage information, the user actually controls the appli-
ances or sensors.

Confirmation

Finally, the user confirms whether the device performed the actions he/she
intended. To do so, the user looks at the device or gets to the service state
by using service commands. If the results are not as expected, the user goes
back to the Service Discovery, Browsing Usage, or Controlling operations.

Challenges

Our research aims to provide a method that improves the user’s operation cycle.
To do that, the following three issues must be considered:

u-Photo: Interacting with Pervasive Services 193

— How to intuitively remind a user of pervasive services? ... How
does a user discover the services? In particular, when he/she works with
an invisible device such as a sensor embedded in a wall — how to do that?
As we mentioned above, information about the services on the network is
inseparable from physical entity because each pervasive service has limited
actuation or sensor area in the physical world.

— How to interact with pervasive services easily and instantly? ---
After a user finds a pervasive service usage, how does he/she browse the
service’s usage? When a user wants to get temperature here and now, how
does he/she do so? One way is that he/she looks up the information required
for using the services such as the URL, and then executes the client appli-
cation for using the service on his/her PC, and finally, he/she executes the
operation. However, this would be difficult for novice users.

— How to manage pervasive services’ information? -..- When a user
controls a device from a remote location, he/she needs information about
the service such as the device name and the location of the device. More-
over, personalization requires storing information about the services’ states.
However, it is difficult for users to manage a lot of information. When there
are many caches of text descriptions of pervasive services, a user would be
hard pressed to remember which description applies to which service. The
stored information should be easily distinguishable from other information.

3 Concept of u-Photo: Interactive Digital Still Image

Our concept is based on an interactive, augmented still image called u-Photo. A
u-Photo includes following three types of information about pervasive services:

1. Physical Entities of Pervasive Services. A digital still image can show
the corresponding physical entities of pervasive services. For example, if an
air conditioner in user’s home appears in a still image, the image shows that
the figure is a physical entity corresponding to the air conditioner service.

2. Network Information about Pervasive Services. Client applications
for pervasive services require information about services’ network. For ex-
ample, when a user wants to print documents on a networked printer, he/she
needs to know network information such as the printer’s name, the IP ad-
dress, and the type of the printer.

3. State Information of Pervasive Services. Personalization services need
the state information of the source device, in order to transfer them to the
destination device. An example of state information is content data and a
timecode for playing in the video services.

3.1 Augmented Image-Based Interaction

U-Photo deals with the issue of service discovery in two phases, generating and
viewing. The simple action of taking a photograph triggers the discovery of
services. Users can easily determine the target to focus on and the time needed

194 G. Suzuki et al.

Fig. 2. The image-based interaction with pervasive services: (a) User clicks TV icon
on a still image, and (b) GUI of TV control application superimposes on the still image

to capture it. Then, the discovered information is saved in a still image such
as u-Photo. When a user opens u-Photo, notations such as ‘Video Service’ and
‘Sensor Service’ appear on the still image, and the user knows that pervasive
services are embedded.

U-Photo also presents an image-based intuitive interaction with pervasive
services. Just by clicking on the target objects in the photo image, the pervasive
service’s client application is superimposed (see Fig[2)). There is no need to know
the TP address, the URL, or any information about the network.

To address the issue of managing information efficiently, since u-Photo media
include still images, users can find the network information by browsing images
even if there are a lot of them. Keeping state information is intuitive since the
still image shows information about visual state of the services. In addition,
digital still images are suitable for carrying and distributing. Once a user takes
a u-Photo, he/she can send it to friends by attaching it to e-mail.

3.2 Pervasive Services and Their Eyemarks

Each service must have a physical entity that appears on a still image. We call
the physical entity a service eyemark. We define three patterns for configuring
service eyemarks.

The first pattern occurs when devices are visible and are the service eyemarks
themselves (see Fig.3(a)). For example, display devices can be a service eyemark
because they are revealed. When one device provides multiple pervasive services,
it can be the service eyemark for all services.

In a case where the target devices are embedded, services working at these
devices have external service eyemarks (see Fig.3(b)). In particular, sensor de-
vices in a pervasive computing environment tend to be tiny and embedded. Since
the appliances/sensors have an actuation/sensing area, users can guess the area
being denoted by a service eyemark. For instance, a user can issue “temperature
near the plant pot” if the plant pot is configured as a service eyemark.

The last type of service eyemarks is a combination of these two cases. A
revealed device doubles with the service eyemark of an other device (see Fig.3(c)).
A user would issue “temperature near the TV display” if the TV disphy is
configured as a service eyemark of a sensor that stands near the TV display.

u-Photo: Interacting with Pervasive Services 195

@ s I A s I A) Appliances
@ 3) ISensor
&) (b) (©

Service Eyemark

Fig. 3. Models of service eyemarks: (a) Services are working at object (a case where
the object is the appliance/sensor). (b) An object has no services but stands near
the appliances/sensors. (¢) An object has services, and the object stands near other
appliances/sensors

3.3 Scenario

In order to clarify our research goals, we present several scenarios using u-Photo.

— Scenario 1: Controlling Devices
Bob takes pictures of his room, which are stored as u-Photo in his PDA. He
goes out to work, forgetting to turn off the room light. After finishing work,
he realizes he might have left the room light on. To check whether the light is
on or not, he uses the u-Photo Viewer in his PDA and taps the “light icon”
displayed on top of the light image in the u-Photo. His u-Photo responds and
shows that the room light’s state is on. He then taps the OFF button, which
is displayed in the u-Photo, to turn off the room light.

— Scenario 2: Discovering Services in an Unknown Environment
Bob is in a project meeting in a different department and wants to print
a document - an easy job as he can just take a u-Photo of the printers he
sees there to select one suitable, and to start the print job. The u-Photo
automatically configures the printer’s entry on his laptop PC.

— Scenario 3: Recording States Information of Services
One day, Bob and Ann were watching a video at Bob’s home, but Bob needed
to go out to answer a phone call. Bob stored the state of the video service,
such as the content information and the time code, in a u-Photo. He paused
and turns off the TV from the control information of the devices. After re-
turning to her home, Ann received an e-mail from Bob with the u-Photo
attached. She opens the u-Photo and watches the rest of the video at her
desktop computer using u-Photo.

4 System Design for u-Photo

We will describe the system design for our concept. We design u-Photo Tools
as systems to create and view u-Photos. U-Photo Tools consist of the Eyemark
Lookup Server, u-Photo Creator, and u-Photo Viewer as shown in Figldl Eyemark
Lookup Server and u-Photo Creator are systems for generating u-Photo. When a
new pervasive service is installed in the environment, the environment developer
such as an administrator of a building registers the information about the service
to the Eyemark Lookup Server. After the information is registered, users can take
a u-Photo of the service. When a user takes a photo using a device with u-Photo

196 G. Suzuki et al.

. (MService Registration
Environment
Developer e (Eyemark Lookup Server

@Taking u-Photo Create u-Photo

User x u-Photo
vV

®@Viewing u-Photo
(Suiowine whtote e over yiad

Fig. 4. Overview of u-Photo and u-Photo Tools

Creator installed, the u-Photo Creator looks up the network information in the
Eyemark Lookup Server and generates a u-Photo. u-Photo Viewer is u-Photo’s
viewing application.

4.1 u-Photo Media Design

This subsection describes the visualization model of u-Photo and format of u-
Photo Media.

In the u-Photo visualization model, there are three layers in visualizing ser-
vices (see Figl)). The Photo Layer shows the image of an ordinary photo. The
u-Photo overlays two visual layers called the Tag Layer and the Application
Panel Layer on the traditional Photo Layer. In the Tag Layer, service eyemarks
are tagged with clickable icons. The Tag Layer will appear on the Photo Layer
when a user first opens a u-Photo. Clicking an icon triggers the display of the
Application Panel Layer. A GUI of the target service’s client application, such
as a TV control panel or the GUI for acquiring sensor data, is visualized in the
Application Panel Layer. A user decides on a target service by searching the
Photo Layer, then invokes application by clicking icons in the Tag Layer, and
then uses the service from the client application GUI of the Application Panel
Layer.

We will now introduce the u-Photo media format. This format is based
on a JPEG, with an XML description of pervasive services in the comment
area. Figlil shows a DTD of the XML format. <u_photo> has three attributes:

—= Application Panel Layer

19Ke7 010yd-n

1
1
V4 |
* <& Tag Layer
1

Photo Layer

Fig. 5. Visualized layers in u-Photo

u-Photo: Interacting with Pervasive Services 197

<?xml version="1.0"7>

<!ELEMENT u_photo (location_info, timestamp, focusing_area)>
<!ATTLIST u_photo xsize CDATA #REQUIRED>

<!ATTLIST u_photo ysize CDATA #REQUIRED>

<!ELEMENT location_info (#PCDATA)>

<!ELEMENT timestamp (#PCDATA)>

<!ELEMENT focusing_area (service_eyemark)?>

<!ELEMENT service_eyemark (coordinate)>
<!ELEMENT service_eyemark (appliance)+>
<!ELEMENT service_eyemark (sensor)+>

<!ATTLIST service_eyemark id CDATA #REQUIRED>
<!ATTLIST service_eyemark name CDATA #REQUIRED>
<!ELEMENT coordinate (x, y)>

<!ELEMENT x (#PCDATA)>

<!ELEMENT y (#PCDATA)>

<!ELEMENT appliance (application_info*)>
<!ATTLIST appliance id CDATA #REQUIRED>

<!ATTLIST appliance name CDATA #REQUIRED>
<!ATTLIST appliance eyemark_type CDATA #REQUIRED>

<!ELEMENT sensor (application_info*)>
<!ATTLIST sensor id CDATA #REQUIRED>

<!ATTLIST sensor name CDATA #REQUIRED>
<!ATTLIST sensor eyemark_type CDATA #REQUIRED>

Fig. 6. DTD of u-Photo XML

<location_info>, <timestamp> and <focusing area>. <location_info> shows
the location name, global positioning system (GPS) information, or other lo-
cation information. The <service_eyemark>, which shows the description of
pervasive services, is found in the <focusing area>. The Tag Layer repre-
sents the <service_eyemark>. For the icons put on the still image, the
<service_eyemark> has a service eyemark ID | service eyemark name, a coordi-
nate for the service eyemark on the still image (<coordinate>), and one or more
appliances/sensors related to the service eyemark (<appliance> and <sensor>).
<appliance> or <sensor> is used to construct the Application Panel Layer. Both
the <appliance> and <sensor> have a device ID, device name, binding to ser-
vice eyemark that shows whether the device is at the service eyemark or the
device is near service eyemark, and application information.

<application_in fo> is used for describing the network and state information
of pervasive services. Each pervasive service’s client application defines the XML
format for <application_info>. An XML tag example of the application infor-
mation is shown in Fig[fl This is a simple application to control the light. In
the XML tag, there is the IP address of the light server, its port number, a
command for controlling the light, and the state of the light at the time the
u-Photo was created. From this description, a simple ON/OFF button GUI of
the light (Figl) is created without requiring the users to know the IP address
or any other information.

4.2 Eyemark Lookup Server

To detect service eyemark coordinate in a still image, we adopted image pro-
cessing because other methods, such as attaching an RF-tag or IR-transmitter,

198 G. Suzuki et al.

<UI name="Light">
<state>0FF</state>
<button name="ON">
<ip>192.168.10.6</ip>
<port>12345</port>
<command>LIGHT_ON</command>
</button>
<button name="OFF">
<ip>192.168.10.6</ip> —
<port>12345</port> — s
<command>LIGHT_OFF</command> = =
</button>
<button name="Get Status">
<ip>192.168.10.6</ip>
<port>12345</p0rt>
<get_command>GET_STATUS</get_command> -
</button>

</UI>

Location: Ubicomp Deme Time: Wed Oct 08 16:46:23 BST 2004

Fig. 7. XML description of simple Fig. 8. GUI of simple light ON/OFF
light ON/OFF application application

are difficult to use for detecting coordinates in a still image. Processing photo
images has two approaches. One approach attaches visual tags and detects the
ID from the tag’s color, marks, or figures. Another approach picks up the shapes
of the target objects without attaching any visual tags. In the latter approach,
it is difficult to distinguish objects with the same shape. Thus, we adopted the
method that attaches visual tags to each service eyemark.

Next, we discuss how to bind visual tags to the service eyemarks. We assume
that there is an Eyemark Lookup Server in each space. The Eyemark Lookup
Server has a database of bindings between IDs of visual tags, and service eye-
marks in addition to pervasive service’s network information assigned to service
eyemarks. If a user takes a u-Photo and visual tags are detected in u-Photo
image, the tag IDs that are the results of image processing are sent to the Eye-
mark Lookup Server, and the network information of pervasive services with
the information of the service eyemarks is returned. In additional, the Eyemark
Lookup Server can issue new visual tags if a new service eyemark is installed in
the target space. These mechanisms enable users to update service information
from the visual tags.

4.3 u-Photo Creator

The u-Photo Creator runs on the u-Photo Camera, a digital camera with network
connectivity. The modules of the u-Photo Creator are shown in Fig[dl There are
six steps, as follows, in creating a u-Photo:

1. Visual Tag Installer periodically downloads visual tag information for image
processing from the Eyemark Lookup Server.

2. Camera Controller provides the interface for controlling the camera. When
a user presses the shutter button, the captured image will be delivered to
the Image Processor.

u-Photo: Interacting with Pervasive Services 199

Fensor Valu State

Provider

Sensor

Provider

Eyemark Lookup Server

Zensor Valuy

Provider

State
Provider

. Current Current State
I\r{;?rﬂa—['?:gn In’;l;t:qv:tl}l;n Sensor Value of Appliance
i
N\ |)
Visual Tag Camera State Info uf-Photo Media
—u=Photo

Controller Getter Getter Writer

Installator

u—Photo Creator

u—Photo Camera

Fig. 9. u-Photo Creator

3. Image Processor detects a service eyemark on the photo images. Visual tag
IDs and the coordinates in the still image are acquired. This information is
delivered to the Network Information Getter.

4. Network Information Getter sends visual tag IDs to the Eyemark Lookup
Server and obtains pervasive services’ network information.

5. State Information Getter obtains state information such as the state of an
appliance and its current sensor value.

6. u-Photo Media Writer transforms the collected information to the u-Photo’s
XML format and combines the XML data and the captured still image into
JPEG format data.

4.4 u-Photo Viewer

The u-Photo Viewer displays both the Photo Layer and the u-Photo Layer. The
client application runs on users’ computers to perform services. The u-Photo
Viewer has three modules as shown in Fig[IQ

N\ N -

Aol Application
lance
P A Aoslcation show
GUI
B GUI -

~

configurate
& show

u-Photo
Tag GUI

u-Photo

s [

) controll A configurate a9
Apph;atlon <l olld « "-Photo
S|l &s ~$end —
s &R ication_info>
L2 2 |].L
o o |l ‘Application
< <2< .
- Application 2| 2= C Plugin B Plugin A Plugin
Appliance A 3 & ||&
L) e J L u-Photo Viewer)
———

User Computer

Fig. 10. u-Photo Viewer

200

1.

5

We
for
‘We

G. Suzuki et al.

The u-Photo Reader reads the XML data of the u-Photo file when a user
opens a u-Photo file.

The u-Photo Tag GUI displays the Tag Layer using the service eyemark
information from the u-Photo Reader module.

The u-Photo Reader also passes the XML tag to the Application Plug-
In module. The Application Plug-In module configures the client applica-
tion’s network information. This module enables users to use client appli-
cations without doing any manual configuration. Each Application Plug-
In module is downloaded from the Internet on demand according to the
<application_info>’s XML tag.

Prototype Implementation

used the Sony Vaio typeU with an attached USB web camera (see Fig[TTl(a))
the u-Photo Camera. Table [Il and Table [2] present the devices’ specification.
used visual markers from the AR Toolkit [10] as tags (see FiglII(b)). The

Image Processor was written with the AR Toolkit Version 2.65 for Windows. The
AR Toolkit typically processes real-time streaming video, but we configured it
to process images when a user presses a shutter button, as in FigllTc). Fig[T2
shows the GUI sequence from taking a u-Photo to controlling the devices

Table 1. Specification of VAIO typeU Table 2. Specification of USB

Model Vaio type U (VGN-U70P) Camera

Dimensions|167mm x 26.4mm x 108mm

(WxDxH) Model |[PCGA-UVC11

Weight 550g Dimensions(WxDxH) [60mm x 33mm x 34mm
CPU Intel Pentium M 1GHz Weight 42g

Memory 512MB Optical Sensor Type |CMOS - 370,000 pixels
OS Windows XP Professional Video Capture Speed|30 frames per second
JAVA J2SE 1.4.2 Resolution 640 x 480

Display 800x600(5.0inch)

We implemented the following four services and applications: appliance con-

trol, sensor information viewer, printing service, and suspendable video service.

Appliance Control

A TCP/IP-based power-control box is attached to control a light and an
electric fan. Their control application is a simple network application in
which the client application sends a control command in text format to IP
address and port of the control server. Service eyemarks are configured by
the light and the fan themselves.

Sensor Information Viewer

For networked sensor units, U.C. Berkeley Mica2s are used. There is a sensor
server at a PC that connects to the gateway node of the Mica2. The sensor
services’ service eyemarks are a light, an electric fan, a printer, and a display
near the sensors.

u-Photo: Interacting with Pervasive Services 201

Visual Marker

Fig. 11. Prototype implementation: (a) u- Fig.12. GUI sequence from taking u-
Photo Camera. (b) Visual markers of AR Photo (shown in Top figure) to controlling
Toolkit. (¢) Taking a u-Photo device using u-Photo Viewer

202 G. Suzuki et al.

— Printing Service
The printer application supports not only printing from the printer GUI
invoked by clicking the printer image on u-Photo but also a drag-and-drop
action, meaning dragging a document and dropping it on the printer image.

— Suspendable Video Service
A QuickTime streaming server provides video services. To realize suspend-
able video service, we adopt Wapplet framework [9] that deals with media
data. When we take a u-Photo of a PC’s display that plays a video, the
Wapplet framework running on the PC records the the URL and the time
code of the video as a Wapplet profile. The Wapplet profile is written as a
<wapplet> description (one of the <application_info>) of the u-Photo XML.
Other video devices easily resume the same video from the same scene using
the u-Photo.

The execution time from pushing the shutter button to displaying a u-Photo
is 1.9 seconds. The time for creating a u-Photo is 0.9 seconds. The rest of the
time is used to draw a GUI of the u-Photo Viewer.

The difference between the data format of u-Photo and that of normal JPEG
file is text data of u-Photo XML. In our experimental applications, data of u-
Photo XML description changes JPEG file size from 43 KB to 45 KB at the
maximum.

6 Usability Analysis

We performed two tests to measure the following three usability metrics of u-
Photo and u-Photo Tools.

— Learnability of u-Photo Tools
— Subjective satisfaction of u-Photo Tools
— Efficiency of managing pervasive services’ information as u-Photo media.

In the first test, subjects completed multiple tasks using u-Photo Tools and
then filled out questionnaires. In the test, the subjects, including 12 novice users
and 5 expert users of u-Photo Tools, had eight tasks to complete. In each task,
the subjects either controlled appliances or received sensor data: e.g., turning
on a light using u-Photo Tools and getting temperature near a plant pot. We
measured how easy u-Photo Tools was to learn to use by comparing the time
spent by novice users of u-Photo to finish tasks to the time spent by expert
u-Photo users to finish a task. The questionnaire’s answers show us the system’s
subjective satisfaction.

The result of comparing the time presents that using u-Photo Tools is easy
to learn. The graphs shown in Fig[I3 denote the expert and novices’ learnability
about the controlling devices. Fig[I3|(a) shows the time it took to finish each task,
and FiglI3[(b) denotes the ratio of the time taken by the experts and novices that
is shown in Fig[I3[(a). There is a difference of over ten seconds between the novice
users’ time and expert users’ time for Taskl, which is the first task. But there
almost be no difference between the expert and novices users after the first task.

u-Photo: Interacting with Pervasive Services 203

35

30 DL

B /
25 hd

1.8F
1.6F
1.4F S

Y
1.2 s

Time [Sec.]
&

0.8
0.6
0.4
0.2

— Expert User

===Novice User

5
.
h
4
Ratio of time
between novice users and expert users
-

Taskl Task2 Task3 Task4 Task5 Task6 Task7 Task8

(b)

0 Taskl Task2 Task3 Task4 Task5 Task6 Task7 Task8

(a)

Fig. 13. The time spent for controlling devices. (a) Average time that novice users and
expert users took for controlling devices in each task. The solid line shows the average
time of expert users and the dotted line represents average users’ time. (b) Learning
curves of novice users

To measure subjective satisfaction, we asked the novice users to fill out our
questionnaire after completing the test. The questionnaire uses the Likert scale
[12]. The statements and results are shown in Table Bl Users indicated their
degree of agreement with each statement on a 1-5 scale for each statement (1
= strongly disagree, 2 = partly disagree, 3 = neither agree nor disagree, 4 =
partly agree, and 5 = strongly agree). From the table, we can see that users are
highly satisfied about Q1, Q3, and Q6 in both cases of acquiring information
and controlling devices. In contrast, users disagree on Q2. The average ratings
of the questionnaire are 3.89 for capturing and 3.94 for controlling. To calculate
the average rating, the rating of the negative questions (Q2 and Q4) is reversed.
The value 3.6 is known as a better estimate of "neutral” or ”average” subjective
satisfaction [13]. Therefore, the subjective satisfaction with our system is better
than average. However, the subjects who agreed with Q2 said that there are
two factors that frustrated them: GUI responses occasionally became slow and
recognition of visual markers sometimes failed. These are performance issues.
Thus, improvement of the prototype’s usage could make subjective satisfaction
better.

The objective of the second test was to evaluate the efficiency of managing
pervasive services information with u-Photo media. We compared the time that

Table 3. Questionairre’s results

Question | *1] *2

Q1: It was very easy to learn how to use 4.83]4.83

this system.

Q2: Using this system was a frustrating 2.58| 2.5 *1 Average ratings for
experience. capturing information
Q3: I feel that this system allows me 3.92(3.83 using u-Photo Tools

to achieve very high productivity. *2 Average ratings for
Q4: I worry that many of the things I did 2.17|2.17 controlling devices using
with this system may have been wrong. u-Photo Tools

Q5: This system can do all the things 3.08(3.17

I think I would need.

Q6: This system is very pleasant to work with.|4.25] 4.5

204 G. Suzuki et al.

250

200 mu-Photo @Text

—
IS4
=)

Time [Sec.]
=

o

S

I 1

0

Task1 Task2 Task3 Task4

Fig. 14. The time for finding a file

expert users took to find the object in piles of u-Photos with the time it took
to find the object in a pile of Wapplet profiles. Wapplet profiles are text format
files and include information for personalization. In the test, we had five expert
u-Photo users as trial subjects. Each subject downloaded 21 u-Photos and 21
Wapplet profiles to his/her PC and searched for four objects from the files, an
air conditioner, a microwave oven, a printer, and a video display. We recorded
the time it took to find the correct file by using u-Photo and Wapplet profiles.
The time spent in finding a file is shown in Fig{l4l This graph shows the
maximum, average, and minimum time spent. In each task, the time spent using
u-Photo is shorter than the time spent using Wapplet profile in text format. In
Task3 and Task4, in which other files also included printers and video displays
information, there was quite a difference of time spent between u-Photo and text
information. From these results, we conclude that the efficiency of managing
information in u-Photo format is better than the conventional text format.

7 Discussion

Demonstrations at UbiComp2004 [19], and UCS2004 [I8] also showed us users’
impressions of u-Photo Tools. Over 200 participants used or viewed the system
in close up. We found that our approach seemed to attract the participants, but
the difference between the shape of u-Photo Camera (shown in FigllT(a)) and
a traditional camera would cause misunderstanding about u-Photo’s the use.
Therefore, next prototype of u-Photo Camera should be camera-shaped with a
traditional shutter button.

Because the visual tags can treat the same devices as different service eye-
marks, using visual tags seems to scalable against the number of services. In
addition, while there is no global need for unique visual tags, the Eyemark
Lookup Server supports unique visual tags. We actually used LED transmitters,
which are identified by their color and blinking pattern, in our first prototypes
but found them too hard to configure. In contrast, it is easy to generate visual
markers in the current prototype. The environment developer simply decides on
a unique black-and-white marker pattern, prints it, and attaches it to a service
eyemark.

u-Photo: Interacting with Pervasive Services 205

A scalability issue of users arises in the environment that has a lot of users per
service. A user authentication module for u-Photo Creator and u-Photo Viewer
will be necessary. In addition, u-Photo Viewer also needs exclusive access control
for the controlling devices. If two users control the same light at the same time,
the light should operate based on only one of the two commands determined by
user’s authority, location, and so on.

8 Related Work

There have been similar researches that share a part of our motivation. Passage
[16] and mediaBlocks [I] use physical objects to transfer information between
devices. In Passage, physical objects such as a watch and a key chain are called
the “Passenger.” When users want to transport digital objects, they only move
the Passenger from the source device to the destination device. The media-
Blocks, which are electronically tagged wooden blocks, serve as physical icons
that transport online media. Using physical objects is useful for the immediate
use of personalization service but unsuitable for long-term use of multiple ob-
jects. Suppose a user has a great deal of Passengers/mediaBlocks. How can the
user know which one has which information? On the other hand, since u-Photo
includes the still image, it would be easier to grasp the binding between files and
information.

There is a wide variety of systems that visualize environment information.
NaviCam [I5] displays situation-sensitive information by superimposing mes-
sages on its video see-through displays using PDAs, head mounted displays,
CCD cameras, and color-coded IDs. InfoScope [5] is an information augmen-
tation system that uses a camera and a PDA’s display without any tags on
objects. When a user points him of her PDA to buildings or places, the sys-
tem displays the name of the place or the stores in the building on the PDA.
DigiScope [2] annotates an image-using, visual, see-through tablet. In this sys-
tem, a user can interact with embedded information related to a target object
by pointing to the object. Although these researches are similar to u-Photo in
terms of annotating an image, the researchers focused on real-time use where
a user can interact with a target object in front of the user now. On the other
hand, we concentrated on recording pervasive services information and reusing
it.

Truong, Abowd, and Brotherton [20] have developed applications in which
tasks are recorded as streams of information that flow through time. Classroom
2000, one of their applications, captures a fixed view of the classroom, what
the instructor says, and other web-accessible media the instructor may want to
present. In this approach, which stream to record or when to record the stream
depends on each application. In addition, since the tasks they target on are never
executed again, every state of the task needs to be recorded as a stream. On the
other hand, the tasks we focused on are reproducible, and we note the states
of tasks that are captured only when the user releases the shutter to produce
digital photos.

206 G. Suzuki et al.

Several products have already been provided that focus on recording con-
textual information to digital photos. Digital cameras provide states (e.g., focal
length, zoom, and flash) and cellular phones provide GPS information. However,
the present products and the photo format do not provide methods for noting
the pervasive services information and using photos as user interfaces of a target
object in the photo.

9 Conclusion

To address the difficulty in discovering and using pervasive services, this pa-
per presented u-Photo, an interactive, digital still image. Taking a photograph
also captures information for service discovery. U-Photo, which is generated by
taking a photo, becomes a GUI for specifying the target services. We have devel-
oped u-Photo Tools for generating and viewing u-Photo. Experiments with the
prototypes gave us the following three usability results: (1) After novice users of
u-Photo Tools use u-Photo Tools only a few times, they can complete tasks in
the same amount of time as expert users. (2) The subjective satisfaction with
u-Photo Tools is better than average. (3) Users can find information in u-Photo
a file easily more than text-based files. However, we learned that improving the
u-Photo Camera hardware will make our system more useful. We also think that
a user authentication and device access control will make u-Photo Tools a more
scalable and robust system.

Acknowledgements. This work has been conducted partly as part of the
YAOYOROZU Project by the Japanese Ministry of Education, Culture, Sports,
Science and Technology, and the Ubila Project by the Japanese Ministry of In-
ternal Affairs and Communications.

References

1. H. Ishii B. Ullmer and D. Glas: mediaBlocks: Physical Containers, Transports, and
Controls for Online Media. In Computer Graphics Proceedings (SIGGRAPH’98),
1998.

2. A. Ferscha and M. Keller: Digiscope: An Invisible Worlds Window. In Adjunct Pro-
ceedings of the 5th International Conference on Ubiquitous Computing (UbiComp
2003), 2003.

3. H.W. Gellersen, A. Schmidt, and M. Beigl: Multi-Sensor Context-Awareness in
Mobile Devices and Smart Artefacts. In Mobile Networks and Applications, 2002.

4. E. Guttman, C. Perkins, J. Veizades, and M. Day: Service Location Protocol,
version 2. In Internet Request For Comments RFC 2608, 1999.

5. I. Haritaoglu: Infoscope: Link from Real World to Digital Information Space.
In Proceedings of the 3rd International Conference on Ubiquitous Computing.
Springer-Verlag, 2001.

6. W. Heinzelman, J. Kulik, and H. Balakrishnan: Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks. In Proceedings of the International
Conference on Mobile Computing and Networking, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

u-Photo: Interacting with Pervasive Services 207

J. Hill and D. Culler: A Wireless Embedded Sensor Architecture for System-Level
Optimization. Technical report, U.C. Berkeley, 2001.

Sun Microsystems Inc. Jini technology overview. Sun White papers, 1999.

T. Iwamoto, N. Nishio, and H. Tokuda: Wapplet: A Media Access Framework for
Wearable Applications. In Proceedings of the International Conference on Infor-
mation Networking, 2002.

H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana: Virtual
Object Manipulation on a Table-top AR Environment. In Proceedings of the In-
ternational Symposium on Augmented Reality (ISAR 2000), 2000.

T. Kawamura, T. Hasegawa, A. Ohsuga, and S. Honiden: Bee-gent: Bonding and
Encapsulation Enhancement Agent Framework for Development of Distributed
Systems. In the 6th Asia Pacific Software Engineering Conference, 1999.

M.J. LaLomia and J.B. Sidowski: Measurements of Computer Satisfaction, Lit-
eracy, and Aptitudes: A Review.: International Journal on Human Computer
Interaction volume 2, 1990.

J. Nielsen and J. Levy: Measuring Usability-Preference vs. Performance. In Com-
munications of the ACM 37, 1994.

Universal Plug and Play Forum. http://www.upnp.org.

J. Rekimoto and K. Nagao: The World Through the Computer: Computer Aug-
mented Interaction with Real World. In Proceedings of Symposium on User Inter-
face Software and Technology. ACM, 1995.

N.A. Streitz S. Konomi, C. Muller-Tomfelde: Passage: Physical Transportation
of Digital Information in Cooperative Buildings. In Proceedings of the Second
International Workshop on Cooperative Buildings (CoBuild’99), 1999.

I. Satoh: A Mobile Agent-based Framework for Location-based Services. In Pro-
ceedings of IEEE International Conference on Communications (ICC), 2004.

G. Suzuki, D. Maruyama, T. Koda, S. Aoki, T. Iwamoto, K. Takashio, and
H. Tokuda: Playing with Ubiquitous Embedded Information using u-Photo. Demo
Session of International Symposium on Ubiquitous Computing Systems, 2004.

G. Suzuki, D. Maruyama, T. Koda, T. Iwamoto, S. Aoki, K. Takashio, and
H. Tokuda: u-Photo Tools: Photo-based Application Framework for Controlling
Networked Appliances and Sensors. In Electronic Adjunct Proceedings of The 6th
International Conference on Ubiquitous Computing (UbiComp2004), 2004.

K. N. Truong, G. D. Abowd, and J. A. Brotherton: Who, What, When, Where,
How: Design Issues of Capture & Access Applications. In Proceedings of the 3rd
International Conference on Ubiquitous Computing. Springer-Verlag, 2001.

W. Yeong, T. Howes, and S. Kill: Lightweight Directory Access Protocol. In
Internet Request For Comments RFC 1777, 1995.

	Introduction
	Pervasive Services
	Classification of Pervasive Services
	User Operation Cycle
	Challenges

	Concept of u-Photo: Interactive Digital Still Image
	Augmented Image-Based Interaction
	Pervasive Services and Their Eyemarks
	Scenario

	System Design for u-Photo
	u-Photo Media Design
	Eyemark Lookup Server
	u-Photo Creator
	u-Photo Viewer

	Prototype Implementation
	Usability Analysis
	Discussion
	Related Work
	Conclusion

