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Abstract. This article gives an overview of the Rough Set Exploration
System (RSES). RSES is a freely available software system toolset for
data exploration, classification support and knowledge discovery. The
main functionalities of this software system are presented along with a
brief explanation of the algorithmic methods used by RSES. Many of
the RSES methods have originated from rough set theory introduced by
Zdzis�law Pawlak during the early 1980s.

1 Introduction

This paper introduces the latest edition of the Rough Set Exploration System
(RSES) software system toolset that makes it possible to analyze tabular datasets
utilizing various methods. In particular, many RSES methods are based on rough
set theory (see, e.g., [20–28, 30–32]). The first version of RSES and its companion
RSESlib became available over a decade ago. After a number of modifications,
improvements, and removal of detected bugs, RSES has been used in many ap-
plications (see, e.g., [5, 11, 14, 15, 29, 34, 41]).

The RSESlib library of tools for rough set computations was successfully used
for data analysis with encouraging results. Comparison with other classification
systems (see, e.g., [2, 19, 29]) proves its value. The early version of RSESlib was
also used in construction of the computational kernel of ROSETTA, an advanced
system for data analysis (see,e.g, [12, 42]).

At the moment of this writing RSES version 2.2 is the most current. This
version was prepared by the research team supervised by Professor Andrzej
Skowron. Currently, the RSES R&D team consists of: Jan Bazan, Rafa�l
Latkowski, Micha�l Miko�lajczyk, Nguyen Hung Son, Nguyen Sinh Hoa, Dominik
Ślȩzak, Piotr Synak, Marcin Szczuka, Arkadiusz Wojna, Marcin Wojnarski, and
Jakub Wróblewski.

The RSES ver. 2.2 software and its computational kernel – the RSESlib 3.0
library – maintains all advantages of previous versions. The algorithms have been
redesigned to provide better flexibility, extended functionality and the ability
to process massive data sets. New algorithms added to the library reflect the
current state of our research in classification methods originating in rough sets
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theory. Improved construction of library allows further extensions and supports
augmentation of RSESlib into different data analysis tools.

Today RSES is freely distributed for non-commercial purposes. Anybody can
download it from the Web site [40].

The RSES software and underlying computational methods have been suc-
cessfully applied in many studies and applications. A system based on LTF-C
(see Subsection 8.3) won the first prize in the EUNITE 2002 World Competition
“Modeling the Bank’s Client behavior using Intelligent Technologies” (see [41]).
Approaches based on rule calculation have been successfully used in areas such
as gene expression discovery (see, e.g., [34]), survival analysis in oncology (see,
e.g., [5]), software change classification (see, e.g., [29]), classification of biomedi-
cal signal data (see, e.g., [15]), and classification of musical works and processing
musical data (see, e.g, [11, 14]).

In this paper we attempt to provide quite a general description of capabili-
ties of our software system. We also present a handful of basic facts about the
underlying computational methods. The paper starts with introduction of basic
notions (Section 2) that introduces the vocabulary for the rest of this article.
Next, we describe, in general terms, main functionalities of RSES (Section 3) and
architecture of the system (Section 4). Rest of the paper presents computational
methods in the order introduced in Figure 1. Starting from input management
(Section 5) we go through data preprocessing (Section 6) and data reduction
(Section 7), to conclude with description of methods for classifier construction
and evaluation (Section 8).

2 Basic Notions

In order to provide clear description further in the paper and avoid any mis-
understandings we bring here some essential definitions from Rough Set theory.
We will frequently refer to the set of notions introduced in this section. Quite
comprehensive description of notions and concepts related to classical rough sets
may be found in [13].

The structure of data that is central point of our work is represented in the
form of information system [28] or, more precisely, the special case of information
system called decision table.

Information system is a pair of the form A = (U, A) where U is a finite
universe of objects and A = {a1, ..., am} is a set of attributes, i.e., mappings of
the form ai : U → Va , where Va is called value set of the attribute ai. The
decision table is also a triple of the form A = (U, A, d) where the major feature
that is different from the information system is the distinguished attribute d.
In case of decision table the attributes belonging to A are called conditional
attributes or simply conditions while d is called decision (sometimes decision
attribute). The cardinality of the image d(U) = {k : d(s) = k for some s ∈ U} is
called the rank of d and is denoted by rank(d).

One can interpret the decision attribute as a kind of classifier on the universe
of objects given by an expert, a decision-maker, an operator, a physician, etc.
This way of looking at data classification task is directly connected to the general
idea of supervised learning (learning with a “teacher”).
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Decision tables are usually called training sets or training samples in machine
learning.

The i−th decision class is a set of objects Ci = {o ∈ U : d(o) = di}, where di

is the i−th decision value taken from decision value set Vd = {d1, ..., drank(d)}.
For any subset of attributes B ⊂ A indiscernibility relation IND(B) is de-

fined as follows:

xIND(B)y ⇔ ∀a∈Ba(x) = a(y) (1)

where x, y ∈ U. If a pair (x, y) ∈ U × U belongs to IND(B) then we say that x
and y are indiscernible by attributes from B.

Having indiscernibility relation we may define the notion of reduct. B ⊂ A
is a (global) reduct of information system if IND(B) = IND(A) and no proper
subset of B has this property. There may be many reducts for a given information
system (decision table). We are usually interested only in some of them, in
particular those leading to good classification models.

As the discernibility relation and reducts (reduction) are the key notions in
classical rough sets we want to dwell a little on these notions and their variants
used in RSES.

A relative (local) reduct for an information system A = (U, A) and an object
o ∈ U is an irreducible subset of attributes B ⊂ A that suffices to discern o from
all other objects in U . Such reduct is only concerned with discernibility relative
to the preset object.

In case of decision tables the notion of decision reduct is handy. The deci-
sion reduct is a set B ⊂ A of attributes such that it cannot be further reduced
and IND(B) ⊂ IND(d). In other words, decision reduct is a reduct that only
cares about discernibility of objects that belong to different decision classes. This
works under assumption that the table is consistent. If consistency is violated,
i.e., there exist at least two objects with identical attribute values and differ-
ent decision, the notion of decision reduct can still be utilized, but the notion
generalized decision has to be used.

As in general case, there exists a notion of a decision reduct relative to an
object. For an object o ∈ U the relative decision reduct is a subset B ⊂ A
of attributes such that it cannot be further reduced and suffices to make o
discernible from all objects that have decision value different from d(o).

Dynamic reducts are reducts that are calculated in a special way. First, from
the original information system a family of subsystems is selected. Then, for
every member of this family (every subsystem) reducts are calculated. Reducts
(subsets of attributes) that appear in results for many subtables are chosen.
They are believed to carry essential information, as they are reducts for many
parts of original data. For more information on dynamic reducts please refer
to [2].

The set BX is the set of all elements of U which can be classified with
certainty as elements of X , having the knowledge about them represented by
attributes from B; the set BNB(X) is the set of elements which one can classify
neither to X nor to −X having knowledge about objects represented by B.
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If C1, . . . , Cr(d) are decision classes of A then the set BC1 ∪ · · · ∪ BCrank(d)

is called the B-positive region of A and is denoted by POSB(d). The relative
size of positive region, i.e., the ratio |POSB(d)|

|U| , is an important indicator used in
RSES.

Decision rule r is a formula of the form

(ai1 = v1) ∧ ... ∧ (aik
= vk) ⇒ d = vd (2)

where 1 ≤ i1 < ... < ik ≤ m, vi ∈ Vai . Atomic subformulae (ai1 = v1) are
called descriptors or conditions. We say that rule r is applicable to object, or
alternatively, the object matches rule, if its attribute values satisfy the premise
of a rule.

With the rule we can associate some characteristics. SuppA(r) denotes Sup-
port, and is equal to the number of objects from A for which rule r applies
correctly, i.e., the premise of rule is satisfied and the decision given by rule is
similar to the one preset in decision table. MatchA(r) is the number of objects
in A for which rule r applies in general. Analogously the notion of matching set
for a rule or collection of rules may be introduced (see [2–4]).

The notions of matching and supporting set are common to all classifiers,
not only decision rules. For a classifier C we will denote by SuppA(C ) the set of
objects that support classifier, i.e., the set of objects for which classifier gives the
answer (decision) identical to that we already have. Similarly, MatchA(C ) is a
subset of objects in A that are recognized by C . Support and matching make it
possible to introduce two measures that are used in RSES for classifier scoring.
These are Accuracy and Coverage, defined as follows:

AccuracyA(C ) =
|SuppA(C )|
|MatchA(C )|

CoverageA(C ) =
|MatchA(C )|

|A|
By cut for an attribute ai ∈ A, such that Vai is an ordered set we will denote

a value c ∈ Vai . Cuts mostly appear in the context of discretization of real-valued
attributes. In such situation, the cut is a a value for an attribute such that it
determines a split of attribute domain (interval) into two disjoint subintervals.

With the use of cut we may replace original attribute ai by a new, binary
attribute which tells as whether actual attribute value for an object is greater
or lower than c (more in [17]).

Template of A is a propositional formula
∧

(ai = vi) where ai ∈ A and
vi ∈ Vai . A generalized template is the formula of the form

∧
(ai ∈ Ti) where

Ti ⊂ Vai . An object satisfies (matches) a template if for every attribute ai

occurring in the template the value of this attribute on considered object is equal
to vi (belongs to Ti in case of generalized template). The template induces in
natural way the split of original information system into two distinct subtables.
One of those subtables contains objects that satisfy the template, the other those
that do not.
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Decomposition tree is a binary tree, whose every internal node is labeled
by some template and external node (leaf) is associated with a set of objects
matching all templates in a path from the root to a given leaf (see [16] for more
details).

3 Main Functionalities

RSES is a computer software system developed for the purpose of analyzing data.
The data is assumed to be in the form of information system or decision table.
The main step in the process of data analysis with RSES is the construction and
evaluation of classifiers.

Classification algorithms, or classifiers, are algorithms that permit us to re-
peatedly make a forecast in new situation on the basis of accumulated knowl-
edge. In our case the knowledge is embedded in the structure of classifier which
itself is constructed (learned) from data (see [19]). RSES utilizes classification
algorithms using elements of rough set theory, instance based learning, artificial
neural networks and others. Types of classifiers that are available in RSES are
discussed in Section 8.

The construction of classifier is usually preceded by several initial steps. First,
the data for analysis has to be loaded/imported into RSES. RSES can accept
several input formats as described in Section 5. Once the data is loaded, the user
can examine it using provided visualization and statistics tools (see Figures 3F3
and 3F4).

In order to have a better chance for constructing (learning) a proper classifier,
it is frequently advisable to transform the initial data set. Such transformation,
usually referred to as preprocessing may consist of several steps. RSES supports
preprocessing methods which make it possible to manage missing parts in data,
discretize numeric attributes, and create new attributes. Preprocessing methods
are further described in Section 6.

Once the data is preprocessed we may be interested in learning about its
internal structure. By using classical rough set concepts such as reducts, dynamic
reducts and positive region one may pinpoint dependencies that occur in our data
set. Knowledge of reducts may lead to reduction of data by removing some of the
redundant attributes. Reducts can also provide essential hints for the parameter
setting during classifier construction. Calculation of reducts and their usage is
discussed in Section 7.

The general scheme of data analysis process with use of RSES functionalities
in presented in Figure 1.

4 The Architecture of RSES

To simplify the use of RSES algorithms and make it more intuitive the RSES
graphical user interface was constructed. It is directed towards ease of use and vi-
sual representation of workflow. Project interface window consists of two parts.
The visible part is the project workspace with icons representing objects cre-
ated during blue computation. Behind the project window there is the history
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Load/Import 

Data Table 

Preprocessing 
• Missing value completion 
• Discretization 
• Attribute creation 

Reducts 

Reduction 
• Reduct calculation 
• Dynamic reducts 
• Reducts’ evaluation 

Classifier construction 

and evaluation 
• Train-and-test 
• Cross-validation 
• Classifcation of new objects 

Fig. 1. RSES data analysis process.

window, reachable via tab, and dedicated to messages, status reports, errors
and warnings. While working with multiple projects, each of them occupies a
separate workspace accessible via tab at the top of workplace window.

It was designers’ intention to simplify the operations on data within project.
Therefore, the entities appearing in the process of computation are represented
in the form of icons placed in the upper part of workplace. Such an icon is created
every time the data (table, reducts, rules,...) is loaded from the file. Users can
also place an empty object in the workplace and further fill it with results of
operation performed on other objects. Every object appearing in the project
has a set of actions associated with it. By right-clicking on the object the user
invokes a context menu for that object. It is also possible to invoke an action from
the general pull-down program menu in the main window. Menu choices make it
possible to view and edit objects as well as include them in new computations. In

 

Operating System 
MS-Windows, Linux 

Java Virtual Machine 

RSES-lib 2.0 
C++ 

RSES-lib 3.0 
Java 

RSES  GUI 
Java Swing 

Fig. 2. The architecture of RSES.
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many cases a command from context menu causes a new dialog box to open. In
this dialog box the user can set values of parameters used in desired calculation.
If the operation performed on the object leads to creation of a new object or
modification of existing one then such a new object is connected with edge
originating in object(s) which contributed to its current state. Placement of
arrows connecting icons in the workspace changes dynamically as new operations
are being performed. The user has the ability to align objects in workspace
automatically, according to his/her preferences (eg. left, horizontal, bottom).

An important, recently added GUI feature is the possibility to display some
statistical information about tables, rules and reducts in a graphical form. The
look of various components of RSES interface is shown in Figure 3.

Behind the front-end that is visible to the user, there is RSES computational
kernel. This most essential part of the system is built around the library of
methods known as RSESlib ver. 3.0. The library is mostly written in Java but,
it also uses a part that was implemented using C++. The C++ part is the
legacy of previous RSESlib versions and contains those algorithms that could
only lose optimality if re-implemented in Java. The layout of RSES components
is presented in Figure 2. Currently, it is possible to install RSES in Microsoft
Windows 95/98/2000/XP and in Linux/i386. The computer on which the RSES
is installed has to be equipped with Java Runtime Environment.

5 Managing Input and Output

During operation certain functions in RSES may read and write information
to/from files. Most of the files that can be read or written are regular ASCII
text files. A particular sub-types can be distinguished by reviewing the contents
or identifying file extensions (if used). Description of RSES formats can be found
in [40].

As the whole system is about analyzing tabular data, it is equipped with
abilities to read several tabular data formats. At the time of this writing the
system can import text files formatted for old version of RSES (RSES1 format),
Rosetta, and Weka systems. Naturally, there exists native RSES2 file format
used to store data tables.

The old RSES1 format is just a text file that stores data table row by row.
The only alternation is in the first row, which defines data dimension – number
of rows and columns (attributes and objects). All the other input formats are
more complex. The file in these formats consist of the header part and the
data part. The header part defines structure of data, number and format of
attributes, attribute names etc. Additional information from the header proved
to be very useful during analysis, especially in interpretation of results. For
detailed definition of these formats please refer to [42] for Rosetta, [43] for Weka,
and [40] for RSES.

The RSES user can save and retrieve data entities created during experiment,
such as rule sets, reduct sets etc. The option of saving the whole workspace
(project) in a single file is also provided. The project layout together with un-
derlying data structures is stored using dedicated, optimized binary file format.
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Fig. 3. RSES interface windows: A. Project window; B. Decomposition tree; C.
Reduct/rule calculation; D. Classification results; E. Set of cuts; F1–F4. Graphical
statistics for rules, reducts and attributes; G. Decision rules.
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6 Data Preprocessing

The data that is an input to analysis with use of RSES can display several fea-
tures that negatively influence quality and generality of classification model we
want to construct. There may be several such problems with data, depending
on classification paradigm we want to apply. Some of the RSES classifier con-
struction methods require data (attributes) to be represented with use of specific
value sets, e.g., only symbolic attributes are allowed. There may be other prob-
lems, such as missing information (missing values) or inconsistencies in the table.
Finally, we may want to alter the original data by introducing new attributes
that are better suited for classification purposes.

RSES provides users with several functionalities that make it possible to
preprocess original data and prepare a training sample which more likely to lead
to a good classifier.

6.1 Examining Data Statistics

Not a preprocessing method per se, RSES functions for producing data statistics
may serve as a handy tool. By using them the user can get familiar with the
data as well as compare some crucial data characteristics before and after data
modification.

In RSES the user may examine distribution of a single attribute, in particular
the decision distribution. The RSES system is capable of presenting numerical
measurements for distribution of values of a single attribute as well as displaying
the corresponding histogram (see Figure 3 F3). The information gathered for a
single attribute includes range, mean value, and standard deviation. It is also
possible to compare distribution of two attributes on a single plot as shown in
Figure 3 F4.

6.2 Missing Value Completion

The missing elements in data table, so called NULL values, may pose a prob-
lem when constructing classifier. The lack of some information may be due to
incomplete information, error or the constraints embedded in data collection
process.

RSES offers four approaches to the issue of missing values. These are as
follows:

– removal of objects with missing values,
– filling the missing part of data in one of two ways (see [10]):

• filling the empty (missing) places with most common value in case of
nominal attributes and filling with mean over all attribute values in
data set in case of numerical attribute.

• filling the empty (missing) places with most common value for the de-
cision class in case of nominal attributes and filling with mean over all
attribute values in the decision class in case of numerical attribute.



46 Jan G. Bazan and Marcin Szczuka

– analysis of data without taking into account those objects that have incom-
plete description (contain missing values). Objects with missing values (and
their indiscernibility thereof) are disregarded during rule/reduct calculation.
This result is achieved by activating corresponding options in the RSES di-
alog windows for reduct/rule calculation.

– treating the missing data as information (NULL is treated as yet another
regular value for attribute).

6.3 Discretization

Suppose we have a decision table A = (U, A ∪ {d}) where card(Va) is high for
some a ∈ A. Then there is a very low chance that a new object is recognized
by rules generated directly from this table, because the attribute value vector
of a new object will not match any of these rules. Therefore for decision tables
with real (numerical) value attributes some discretization strategies are built
into RSES in order to obtain a higher quality of classification.

Discretization in RSES is a two-fold process. First, the algorithm generates
a set of cuts (see Figure 3 E). These cuts can be then used for transforming
a decision table. As a result we obtain the decision table with the same set of
attributes, but the attributes have different values. Instead of a(x) = v for an
attribute a ∈ A and object x ∈ U we rather get a(x) ∈ [c1, c2], where c1 and
c2 are cuts generated for attribute a by discretization algorithm. The cuts are
generated in a way that the resulting intervals contain possibly most uniform
sets of objects w.r.t decision.

The discretization method available in RSES has two versions, code-named
global and local. Both methods are using a bottom-up approach which adds
cuts for a given attribute one-by-one in subsequent iterations of algorithm. The
difference between these two is in the way the candidate for new cut is scored.
In the global method we consider in scoring all the objects in data table at every
step. In the local method we only take part of objects that are concerned with
this candidate cut, i.e., which have value of the currently considered attribute
in the same range as the cut candidate. Naturally, the second (local) method is
faster as less objects have to be examined at every step. In general, the local
method is producing more cuts. The local method is also capable of dealing with
nominal (symbolic) attributes. The grouping (quantization) of nominal attribute
domain with use of local method always results in two subsets of attribute values.

6.4 Creation of New Attributes

RSES makes it possible to add an attribute to decision table. This new attribute
is created as a weighted sum of selected existing (numerical) attributes. We may
have several such attributes for different weight settings and different attributes
participating in weighted sum. These attributes are carrying agglomerated in-
formation and are intended as a way of simplifying classifier construction for a
given data set.
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Linear combinations are created on the basis of collection of attribute sets
consisting of k elements. These k-element attribute sets as well as parameters
of combination (weights) are generated automatically by adaptive optimization
algorithm implemented in RSES. As a measure for optimization we may use one
of three possibilities. The measures take into account potential quality of decision
rules constructed on the basis of newly created linear combination attribute. For
details on these measures please turn to [33]. The user may specify the number
(k) of new attributes to be constructed and the number of original attributes to
be used in each linear combination.

7 Reduction and Reducts

As mentioned before (Section 2) there are several types of reducts that may be
calculated in RSES for a given information system (decision table). The purposes
for performing reduct calculation (reduction) may vary. One of advantages that
reducts offer is better insight into data. By calculating reducts we identify this
part of data (features) which carries most essential information. Reducts are also
canvas for building classifiers based on decision rules.

Inasmuch as calculation of interesting, meaningful and useful reducts may
be a complicated and computationally costly task, there is a necessity for larger
flexibility when setting up an experiment involving reducts. For that reason there
are several different methods for discovering reducts implemented in RSES.

7.1 Calculating Reducts

In Section 2 we mentioned four general types of reducts. All four of them can be
derived in RSES by selecting appropriate settings for algorithms implemented
(see Figure 3 C). It is important to mention that in most cases selecting object-
related indiscernibility relation (local reducts) leads to creation of much larger
set of reducts. On the other hand, selection of decision-dependant indiscernibility
usually reduces computational cost.

There are two algorithms for reducts calculation available in RSES. First of
them is an exhaustive algorithm. It examines subsets of attributes incrementally
and returns those that are reducts of required type. This algorithm, although
optimized and carefully implemented, may lead to very extensive calculations in
case of large and complicated information systems (decision tables). Therefore,
should be used with consideration.

To address problems with sometimes unacceptable cost of exhaustive, de-
terministic algorithm for reduct calculation, an alternative evolutionary method
is implemented in RSES. This method is based on an order-based genetic algo-
rithm coupled with heuristic. Theoretical foundations and practical construction
of this algorithm are presented in [37] and [3].

The user, when invoking this method, has some control over its behavior since
the population size and convergence speed may be set from the RSES interface
(see Figure 3 C).
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7.2 Calculating Dynamic Reducts

Dynamic reducts are reducts that remain to be such for many subtables of the
original decision table (see [2], [3]). The process of finding the dynamic reduct
is computationally more costly, as it requires several subtables to be examined
in order to find the frequently repeating minimal subsets of attributes (dynamic
reducts). Such dynamic reducts may be calculated for general or decision-related
indiscernibility relation.

The purpose of creating dynamic reducts is that in many real-life experiments
they proved to be more general and better suited for creation of meaningful and
applicable decision rules. Examples of solutions and results obtained with use of
dynamic reduct approach may be found in [2, 3].

The dynamic reduct calculation process involves sampling several subtables
from original table and is controlled by number of options such as: number of
sampling levels, number of subtables per sampling level, smallest and largest
permissible subtable size, and so on. We also decide right on the start if we are
interested in general or decision-related reducts.

As mentioned before, calculation of reducts may be computationally expen-
sive. To avoid overly exhaustive calculation it is advisable to carefully select
parameters for dynamic reduct calculation, taking into account size of data,
number of samples, and size of attribute value sets.

7.3 From Reducts to Rules

Reducts in RSES are, above all, used to create decision rule sets. Equipped with
collection of reducts (reduct set) calculated beforehand, the user may convert
them into a set of decision rules. That may be achieved in two ways, as there
are two methods for creating rules from reducts implemented in RSES.

First option is to calculate so called global rules. The algorithm scans the
training sample object by object and produces rules by matching object against
reduct. The resulting rule has attributes from reducts in conditional part with
values of currently considered object, and points at decision that corresponds to
the decision for this training object. Note, that for large tables and large reduct
set the resulting set of rules may be quite large as well.

Another alternative is to generate all local rules. For each reduct a subtable,
containing only the attributes present in this reduct, is selected. For this sub-
table algorithm calculates a set of minimal rules (rules with minimal number of
descriptors in conditional part – see, e.g., [3]) w.r.t decision. Finally, the rule
sets for all reducts are summed up to form result.

Sets of reducts obtained in RSES may be examined with use of included
graphical module. This module makes it possible to find out how the attributes
are distributed among reducts and how reducts overlap (see Figure 3 F2). In
case of decision reduct it is also possible to verify the size of positive region.

Sets of decision rules obtained as a result may be quite large and some of
the rules may be of marginal importance. This can be, among other things, the
result of using reducts that are of mediocre quality.
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The quality of reducts may be improved after they are calculated. One way to
do that is by shortening. The user may specify the shortening threshold (between
0 and 1) and the algorithm will attempt to remove some attributes from reducts.
The shortening is performed as long as the relative size of positive region for
shortened reduct exceeds the threshold. Note, that in the process of shortening
the resulting subset of attributes may no longer be a proper reduct but it is
shorter and results in more general rules.

In case of dynamic reduct there is even more room for improvement here. We
may perform reduct filtering, eliminating reducts of lower expected quality. To
filter dynamic reducts in RSES the user has to set a value of stability coefficient
(between 0 and 1). This coefficient is calculated for each dynamic reduct during
the process of its creation. We will not bring here the entire theory behind
the stability coefficient. Interested reader may find detailed explanation in [2]
and [3]. Important thing to know is that stability coefficient keeps the record of
appearances of a reduct for subtables sampled in reduct calculation process. The
more frequent occurrence of the reduct (the greater stability) the higher stability
coefficient. High stability (coefficient) of a dynamic reducts strongly suggest that
it contains vital piece of information. Naturally, there is no point in considering
stability coefficient filtering in case on non-dynamic (regular) reducts, as there
in no sampling involved in their creation, and their stability coefficients always
equal 1.

8 Construction and Utilization of Classifiers

Several types of classifiers are represented in RSES, and we present them in
some detail in subsequent parts of this section. All of them follow the scheme of
construction, evaluation and usage.

The classifier in RSES is constructed on the basis of training set consisting
of labeled examples (objects with decisions). Such a classifier may be further
used for evaluation with use of test/validation set or applied to new, unseen
and unlabeled cases in order to establish the value of decision (classification) for
them.

The evaluation of the classifier’s performance in RSES may be conducted
in two ways. We can either apply a train-and-test (also known as hold-out) or
cross-validation procedure.

In train-and-test scenario the (labeled) data is split into two parts of which
first becomes the training, second the testing/validation set. The classifier is
build on the basis of the training set and then evaluated with use of testing one.
The choice of method for splitting data into training and testing set depends on
the task at hand. For some tasks this split is imposed by the task, the nature of
data or the limitations of the methods to be applied. If there are no constraints
on the data split, the training and testing sample is chosen by random. The
responses given by the classifier for test table are compared with desired answers
(known for our data set) and the classification errors are calculated. The results
of such procedure are stored in dedicated object in RSES project interface. The
set of results, when displayed (see Figure 3D), provide the user with values
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of accuracy and coverage of classifier for the entire testing data as well as for
particular decision classes. The distribution of errors made by classifier on test
data set is shown in detail using the typical confusion matrix (see, e.g., [19]).

In the k-fold cross-validation approach the data is split into k possibly equal
parts (folds). Then the train-and-test procedure described above is applied re-
peatedly k times in such a way that each of k parts becomes the test set while
the sum of remaining k − 1 parts is used as a training set to construct classifier.
In each run classification errors are calculated for the current test set. As a result
the RSES returns the same set of results as in train-and-test approach but, the
values of errors are averages over k iterations. The cross-validation approach to
classifier evaluation is commonly used and has a good theoretical background
(see [19]), especially for data sets with no more than 1000 objects. In RSES the
application of cross-validation scheme is controlled with use of dedicated window
which makes it possible to select number of folds and all important parameters
for a classifier to be constructed and evaluated.

When using a previously constructed classifier for establishing decision for
previously unseen, unlabeled objects, the user have to take care of the proper
format of the examples. If during construction of classifier the training set was
preprocessed (e.g., discretized) then the same procedure has to be repeated for
the new data table. If the format of data and the classifier match, the result is
created as a new column in the data table. This column contains the value of
decision predicted by classifier for each object.

8.1 Decision Rules

Classifiers based on a set of decision rules are the most established methods in
RSES. Several methods for calculation of the decision rule sets are implemented.
Also, various methods for transforming and utilizing rule sets are available (see
parts C, F1 and G of Figure 3).

The methods for retrieving rules, given a set of reducts, have been already
described in Subsection 7.3. These methods produce set of rules by matching
training objects against selected set of reducts. In RSES it is possible to calculate
such rules instantly, without outputting the set of reducts. But, it has to be stated
that the reduct calculation is performed in background anyway.

The two methods for rule calculation that use reducts, i.e., the exhaustive
and GA algorithms, are accompanied with another two that are based on slightly
different approach. These two are applying a covering approach. First of the two
utilizes subsets of attributes that are likely to be local (relative) reducts. The
details of this method are described in [38]. Second of the covering algorithm is a
customized implementation of the LEM2 concept introduced by Jerzy Grzyma�la-
Busse in [9]. In LEM2 a separate-and-conquer technique is paired with rough set
notions such as upper and lower approximation. Both covering-based methods
for rule calculation tend to produce less rules than algorithms based on explicit
reduct calculation. They are also (on average) slightly faster. On the downside,
the covering methods sometimes return too few valuable and meaningful rules.

In general, the methods used by RSES to generate rules may produce quite
a bunch of them. Naturally, some of the rules may be marginal, erroneous or
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redundant. In order to provide better control over the rule-based classifiers some
simple techniques for transforming rule sets are available in RSES. Note, that
before any transformation of rule set it is advisable to examine the statistics
produced in RSES for such an entity (see Figure 3 F1). The simplest way to
alter the set of decision rules is by filtering them. It is possible to eliminate from
rule set these rules that have insufficient support on training sample, or those
that point at decision class other than desired.

More advanced operations on rule sets are shortening and generalization.
Rule shortening is a method that attempts to eliminate descriptors from the
premise of the rule. The resulting rule is shorter, more general (apply to more
training objects) but, it may lose some of its precision. The shortened rule may
be less precise, i.e., may give wrong answers (decision) for some of the matching
training objects. The level to which we accept decrease of quality in favor of
improved generality of rules is known as shortening ratio and may be set by
the user of RSES. Generalization is the process which attempts to replace single
descriptors (conditions) in the rule with more general ones. Instead of a unary
condition of the form a(x) = v, where a ∈ A, v ∈ Va, x ∈ U , the algorithm
tries to use generalized descriptors of the form a(x) ∈ Vc, where Vc ⊂ Va. Note,
that in generalization process the implicit assumption about manageable size of
Va for each a ∈ A is crucial for the algorithm to be computationally viable. A
descriptor (condition) in a rule is replaced by its generalized version if such a
change do not decrease size of positive region by the ratio higher than a threshold
set by the user.

When we attempt to classify an object from test sample with use of generated
rule set it may happen that various rules suggest different decision values. In
such conflict situations we need a strategy to resolve controversy and reach a
final result (decision). RSES provides a conflict resolution strategy based on
voting among rules. In this method each rule that matches the object under
consideration casts a vote in favor of the decision value it points at. Votes are
summed up and the decision that got majority of votes is chosen. This simple
method (present in RSES) may be extended by assigning weights to rules. Each
rule then votes with its weight and the decision that has the highest total of
weighted votes is the final one. In RSES this method (also known as Standard
voting) assigns each rule the weight that is equal to the number of training
objects supporting this rule.

8.2 Instance Based Method

As an instance based method we implemented the special, extended version
of the k nearest neighbors (k-nn) classifier [7]. First the algorithm induces a
distance measure from a training set. Then for each test object it assigns a
decision based on the k nearest neighbors of this object according to the induced
distance measure.

The distance measure ρ for the k-nn classifier is defined as the weighted sum
of the distance measures ρa for particular attributes a ∈ A:
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ρ(x, y) =
∑

a∈A

wa · ρa(a(x), a(y)).

Two types of a distance measure are available to the user. The City-SVD
metric [6] combines the city-block Manhattan metric for numerical attributes
with the Simple Value Difference (SVD) metric for symbolic attributes.

The distance between two numerical values ρa(a(x), a(y)) is the difference
|a(x) − a(y)| taken either as an absolute value or normalized with the range
amax − amin or with the doubled standard deviation of the attribute a on the
training set. The SVD distance ρa(a(x), a(y)) for a symbolic attribute a is the
difference between the decision distributions for the values a(x) and a(y) in
the whole training set. Another metric type is the SVD metric. For symbolic
attributes it is defined as in the City-SVD metric and for a numerical attribute a
the difference between a pair of values a(x) and a(y) is defined as the difference
between the decision distributions in the neighborhoods of these values. The
neighborhood of a numerical value is defined as the set of objects with similar
values of the corresponding attribute. The number of objects considered as the
neighborhood size is the parameter to be set by a user.

A user may optionally apply one of two attribute weighting methods to im-
prove the properties of an induced metric. The distance-based method is an
iterative procedure focused on optimizing the distance between the training ob-
jects correctly classified with the nearest neighbor in a training set. The detailed
description of the distance-based method is described in [35]. The accuracy-based
method is also an iterative procedure. At each iteration it increases the weights
of attributes with high accuracy of the 1-nn classification.

As in the typical k-nn approach a user may define the number of nearest
neighbors k taken into consideration while computing a decision for a test object.
However, a user may use a system procedure to estimate the optimal number
of neighbors on the basis of a training set. For each value k in a given range
the procedure applies the leave-one-out k-nn test and selects the value k with
the optimal accuracy. The system uses an efficient leave-one-out test for many
values of k as described in [8].

When the nearest neighbors of a given test object are found in a training set
they vote for a decision to be assigned to the test object. Two methods of nearest
neighbors voting are available. In the simple voting all k nearest neighbors are
equally important and for each test object the system assigns the most frequent
decision in the set of the nearest neighbors. In the distance-weighted voting each
nearest neighbor vote is weighted inversely proportional to the distance between
a test object and the neighbor. If the option of filtering neighbors with rules
is checked by a user, the system excludes from voting all the nearest neighbors
that produce a local rule inconsistent with another nearest neighbor (see [8] for
details).

The k-nn classification approach is known to be computationally expensive.
The crucial time-consuming task is searching for k nearest neighbors in a training
set. The basic approach is to scan the whole training set for each test object. To
make it more efficient an advanced indexing method is used [35]. It accelerates
searching up to several thousand times and allows to test datasets of a size up
to several hundred thousand of objects.
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8.3 Local Transfer Function Classifier

Local Transfer Function Classifier (LTF-C) is a neural network solving classifi-
cation problems [36]. LTF-C was recently added to RSES as yet another classifi-
cation paradigm. Its architecture is very similar to this of Radial Basis Function
neural network (RBF) or Support Vector Machines (SVM) – the network has
a hidden layer with gaussian neurons connected to an output layer of linear
units. The number of inputs corresponds to the number of attributes while the
number of linear neurons in output layers equals the number of decision classes.
There are some additional restrictions on values of output weights that enable
to use an entirely different training algorithm and to obtain very high accuracy
in real-world problems.

The training algorithm of LTF-C comprises four types of modifications of
the network, performed after every presentation of a training object:

1. changing positions (means) of gaussians,
2. changing widths (deviations) of gaussians, separately for each hidden neuron

and attribute,
3. insertion of new hidden neurons,
4. removal of unnecessary or harmful hidden neurons.

As one can see, the network structure is dynamical. The training process starts
with an empty hidden layer, adding new hidden neurons when the accuracy
is insufficient and removing the units which do not positively contribute to the
calculation of correct network decisions. This feature of LTF-C enables automatic
choice of the best network size, which is much easier than setting the number
of hidden neurons manually. Moreover, this helps to avoid getting stuck in local
minima during training, which is a serious problem in neural networks trained
with gradient-descend. The user is given some control over the process of network
construction/trainig. In particular, it is for user to decide how rigid are the
criteria for creating and discarding neurons in the hidden layer. Also, the user
may decide whether to perform data (attribute) normalization or not.

8.4 Decomposition Trees

Decomposition trees are used to split data set into fragments not larger than
a predefined size. These fragments, after decomposition represented as leafs in
decomposition tree, are supposed to be more uniform and easier to cope with
decision-wise.

The process of constructing a decomposition tree is fully automated, the user
only has to decide about the maximal size of subtable corresponding to the leaf.
The algorithm generates conditions one by one on subsequent levels of the tree.
The conditions are formulated as a constraints for value of particular attribute.
In this way, each node in the tree have an associated template as well as subset
of training sample that corresponds to this template. It is possible to generate
decomposition trees for data with numerical attributes. In this case discretization
is performed during selection of conditions in tree nodes. A dedicated display
method for presenting decomposition trees is implemented in RSES GUI, so that
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the user can examine interactively the resulting decomposition (see Figure 3B).
For more information on underlying methods please turn to [16] and [18].

The decomposition tree is mostly used in RSES as a special form of classi-
fier. Usually the subsets of data in the leafs of decomposition tree are used for
calculation of decision rules (cf. [3]). The set of data in the leaf is selected by the
algorithm in such a way, that (almost) all objects it contains belong to the same
decision class. If such a set of objects is used to generate rules, there is a good
chance of obtaining some significant decision rules for the class corresponding to
the leaf.

The tree and the rules calculated for training sample can be used in clas-
sification of unseen cases. The rules originating in decomposition tree may be
managed in the same manner as all other decision rules in RSES. It is possible
to generalize and shorten them, although such modified rule sets may not be
reinserted into original tree.

9 Conclusion

We have presented main features of the Rough Set Exploration system (RSES)
hoping that this paper will attract more attention to our software. Interested
reader, who wants to learn more about RSES, may download the software and
documentation form the Internet (cf. [40]).

RSES will further grow, as we intend to enrich it by adding newly developed
methods and algorithms. We hope that many researchers will find RSES an
useful tool for experimenting with data, in particular using methods related to
rough sets.
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