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Abstract. We present a novel approach to understanding the concepts
of the theory of rough sets in terms of the inverse probabilities derivable
from data. It is related to the Bayes factor known from the Bayesian
hypothesis testing methods. The proposed Rough Bayesian model (RB)
does not require information about the prior and posterior probabilities
in case they are not provided in a confirmable way. We discuss RB with
respect to its correspondence to the original Rough Set model (RS) in-
troduced by Pawlak and Variable Precision Rough Set model (VPRS)
introduced by Ziarko. We pay a special attention on RB’s capability to
deal with multi-decision problems. We also propose a method for dis-
tributed data storage relevant to computational needs of our approach.
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1 Introduction

The theory of rough sets, introduced by Pawlak in 1982 (see [10] for references),
is a methodology of dealing with uncertainty in data. The idea is to approximate
the target concepts (events, decisions) using the classes of indiscernible objects
(in case of qualitative data – the sets of records with the same values for the
features under consideration). Every concept X is assigned the positive, negative,
and boundary regions of data, where X is certain, impossible, and possible but
not certain, according to the data based information.

The above principle of rough sets has been extended in various ways to deal
with practical challenges. Several extensions have been proposed as related to the
data based probabilities. The first one, Variable Precision Rough Set (VPRS )
model [24] proposed by Ziarko, softens the requirements for certainty and im-
possibility using the grades of the posterior probabilities. Pawlak [11, 12] begins
research on the connections between rough sets and Bayesian reasoning, in terms
of operations on the posterior, prior, and inverse probabilities. In general, one
can observe a natural correspondence between the fundamental notions of rough
sets and statistics, where a hypothesis (target concept X1) can be verified posi-
tively, negatively (in favor of the null hypothesis, that is a complement concept
X0), or undecided, under the given evidence [4, 15].

Decision rules resulting from the rough set algorithms can be analyzed both
with respect to the data derived posterior probabilities (certainty, accuracy)
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and the inverse probabilities (coverage), like in machine learning methods [8, 9].
However, only the posterior probabilities decide about membership of particular
cases to the positive/negative/boundary regions – the inverse probabilities are
usually used just as the optimization parameters, once the posterior probabilities
are good enough (cf. [16, 21]). Several rough set approaches to evaluation of
“goodness” of the posterior probabilities were developed, like, for example, the
above-mentioned parameter-controlled grades in VPRS. In [25] it is proposed
to relate those grades to the prior probabilities of the target concepts. This
is, actually, an implicit attempt to relate the rough set approximations with
the Bayesian hypothesis testing, where comparison of the posterior and prior
probabilities is crucial [1, 20].

In [18] a simplified probabilistic rough set model is introduced, where a given
new object, supported by the evidence E, is in the positive region of X1, if and
only if the posterior probability Pr(X1|E) is greater than the prior probability
Pr(X1). It is equivalent to inequality Pr(E|X1) > Pr(E|X0), which means
that the observed evidence is more probable assuming hypothesis X1 than its
complement X0 (cf. [19]). This is the first step towards handling rough sets in
terms of the inverse probabilities. Its continuation [17] points at relevance to the
Bayes factor [4, 6, 15, 20], which takes the form of the following ratio:

B1
0 =

Pr(E|X1)
Pr(E|X0)

(1)

The Bayes factor is a well known example of comparative analysis of the in-
verse probabilities, widely studied not only by philosophers and statisticians but
also within the domains of machine learning and data mining. Such analysis is
especially important with regards to the rule confirmation and interestingness
measures (cf. [5, 7]), considered also in the context of the rough set based decision
rules [3, 12, 21]. In this paper we develop the foundations for Rough Bayesian
(RB) model, which defines the rough-set-like positive/negative/boundary re-
gions in terms of the Bayes factor. In this way, the inverse probabilities, used
so far in the analysis of the decision rules obtained from the rough set model,
become to be more directly involved in the specification of this model itself.

Operating with B1
0 provides two major advantages, similar to those related to

its usage in Bayesian reasoning and probabilistic data mining methods. Firstly,
the posterior probabilities are not always derivable directly from data, in a re-
liable way (see e.g. Example 3 in Subsection 2.2). In such cases, information is
naturally represented by means of the inverse probabilities corresponding to the
observed evidence conditioned by the states we want to verify, predict, or ap-
proximate. Within the domain of statistical science, there is a discussion whether
(and in which cases) the inverse probabilities can be combined with the prior
probabilities using the Bayes rule. If it is allowed, then the proposed RB model
can be rewritten in terms of the posterior probabilities and starts to work sim-
ilarly as VPRS. However, such translation is impossible in case we can neither
estimate the prior probabilities from data nor define them using background
knowledge. Then, the data based inverse probabilities remain the only basis for
constructing the rough-set-like models.
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The second advantage of basing a rough set model on the Bayes factor is
that the inverse probabilities provide clearer ability of comparing likelihoods of
concepts. In the probabilistic rough set extensions proposed so far, the posterior
probabilities Pr(X1|E) are compared to constant parameters [24, 25] or to the
prior probabilities Pr(X1) of the same target concepts [18, 19]. A direct com-
parison of probabilities like Pr(X1|E) and Pr(X0|E) would not have too much
sense, especially when the prior probabilities of X1 and X0 differ significantly.
Comparison of the inverse probabilities Pr(E|X1) and Pr(E|X0) is more nat-
ural, as corresponding to relationship between the ratios of the posterior and
prior probabilities for different concepts:

Pr(E|X1)
Pr(E|X0)

=
Pr(X1|E)/Pr(X1)
Pr(X0|E)/Pr(X0)

(2)

It shows that the analysis of the Bayes factor is equivalent to comparison of the
ratios of the gain in probabilistic belief for X1 and X0 under the evidence E (cf.
[18]). Therefore, the RB model can be more data sensitive than the approaches
based on the posterior probabilities, especially for the problems with more than
two target concepts to be approximated. RB is well comparable to Bayesian
hypothesis testing methods, where B1

0 is regarded as a summary of the evidence
for X1 against X0 provided by the data, and also as the ratio of the posterior and
prior odds. Finally, RB may turn out to be applicable to the problems where
the prior probabilities are dynamically changing, remain unknown, or simply
undefinable. Although we do not discuss such situations, we refer to the reader’s
experience and claim that it may be really the case for real-life data sets.

The article is organized as follows: Section 2 presents non-parametric prob-
abilities derivable from data, with their basic intuitions and relations. It also
contains basic information about the way of applying the Bayes factor in deci-
sion making. Section 3 presents the original rough set approach in terms of the
posterior and, what is novel, the inverse data based probabilities. Then it focuses
on foundations of the VPRS model and corresponding extensions of rough sets.
Section 4 introduces the Rough Bayesian approach related to the Bayes factors
calculated for the pairs of decision classes. The proposed model is compared
with VPRS, both for the cases of two and more target concepts. In particu-
lar, it requires extending the original formulation of VPRS onto the multi-target
framework, which seems to be a challenging task itself. Section 5 includes a short
note on an alternative, distributed way of representing the data for the needs
of the Rough Bayesian model. Section 6 summarizes the article and discusses
directions for further research.

2 Data and Probabilities

2.1 Data Representation

In [10] it was proposed to represent the data as an information system A =
(U, A), where U denotes the universe of objects and each attribute a ∈ A is
identified with function a : U → Va, for Va denoting the set of values of a.
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U a1 a2 a3 a4 a5 d

u1 1 1 0 1 2 0
u2 0 0 0 2 2 0
u3 2 2 2 1 1 1
u4 0 1 2 2 2 1
u5 2 1 1 0 2 0
u6 2 2 2 1 1 1
u7 0 1 2 2 2 0
u8 2 2 2 1 1 1
u9 2 2 2 1 1 1
u10 0 0 0 2 2 0

U a1 a2 a3 a4 a5 d

u11 1 2 0 0 2 0
u12 1 1 0 1 2 1
u13 0 1 2 2 2 1
u14 2 1 1 0 2 0
u15 2 2 2 1 1 0
u16 1 1 0 1 2 1
u17 1 1 0 1 2 0
u18 2 1 1 0 2 0
u19 2 2 2 1 1 1
u20 2 2 2 1 1 1

Fig. 1. Decision system A = (U, A ∪ {d}), U = {u1, . . . , u20}, A = {a1, . . . , a5}.
Decision d induces classes X0 = {u1, u2, u5, u7, u10, u11, u14, u15, u17, u18} and X1 =
{u3, u4, u6, u8, u9, u12, u13, u16, u19, u20}.

Each subset B ⊆ A induces a partition over U with classes defined by grouping
together the objects having identical values of B. We obtain the partition space
U/B, called the B-indiscernibility relation INDA(B), where elements E ∈ U/B
are called the B-indiscernibility classes of objects.

Information provided by A = (U, A) can be applied to approximate the target
events X ⊆ U by means of the elements of U/B, B ⊆ A. We can express such
targets using a distinguished attribute d /∈ A. Given Vd = {0, . . . , r − 1}, we
define the sets Xk = {u ∈ U : d(u) = k}. We refer to such extended information
system A = (U, A ∪ {d}) as to a decision system, where d is called the decision
attribute, and the sets Xk are referred to as the decision classes.

Elements of U/B correspond to B-information vectors w ∈ VB – collections
of descriptors (a, v), a ∈ B, v ∈ Va. They are obtained using B-information
function B : U → VB where B(u) = {(a, a(u)) : a ∈ B}.
Example 1. Consider A = (U, A∪{d}) in Fig. 1 and B = {a1, a3}. B-information
vector {(a1, 2), (a3, 2)} corresponds to conjunction of conditions a1 = 2 and
a3 = 2, which is satisfied by the elements of E = {u3, u6, u8, u9, u15, u19, u20}.
In other words, B(ui) = {(a1, 2), (a3, 2)} holds for i = 3, 6, 8, 9, 15, 19, 20. �

2.2 Types of Probabilities

Let us assume that events Xk are labelled with the prior probabilities Pr(Xk),
∑r−1

l=0 Pr(Xl) = 1, r = |Vd|. It is reasonable to claim that any Xk is likely to occur
and that its occurrence is not certain – otherwise, we would not consider such
an event as worth dealing with. The same can be assumed about indiscernibility
classes E ∈ U/B, B ⊆ A, in terms of probabilities of their occurrence in data
A = (U, A ∪ {d}). We can express such requirements as follows:

0 < Pr(Xk) < 1 and 0 < Pr(E) < 1 (3)

Let us also assume that each class E is labelled with the posterior probabil-
ities Pr(Xk|E),

∑r−1
l=0 Pr(Xl|E) = 1, which express beliefs that Xk will occur

under the evidence corresponding to E.
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Remark 1. We can reconsider probabilities in terms of the attribute-value con-
ditions. For instance, if k = 1 and E ∈ U/B groups the objects satisfying
conditions a1 = 2 and a3 = 2, then we can write Pr(d = 1) instead of Pr(X1),
and Pr(d = 1|a1 = 2, a3 = 2) instead of Pr(X1|E). �

In machine learning and data mining [5, 8, 9], the posterior probabilities corre-
spond to the certainty (accuracy, precision) factors. One can also compare prior
and posterior knowledge to see whether a new evidence (satisfaction of condi-
tions) increases or decreases the belief in a given event (membership to a given
decision class). This is, actually, the key idea of Bayesian reasoning [1, 20], re-
cently applied also to rough sets [18, 19]. The easiest way of the data based prior
and posterior probability estimation is the following:

Pr(Xk|E) =
|Xk ∩ E|

|E| and Pr(Xk) =
|Xk|
|U | (4)

Example 2. In case of Fig. 1, we get Pr(d = 1|a1 = 2, a3 = 2) = 6/7, which
estimates our belief that objects satisfying a1 = 2 and a3 = 2 belong to X1. It
seems to increase the belief in X1 with respect to Pr(d = 1) = 1/2. �

One can also use the inverse probabilities Pr(E|Xk),
∑

E∈U/B Pr(E|Xk) = 1,
which express a likelihood of the evidence E under the assumption about Xk

[20]. The posterior probabilities are then derivable by using the Bayes rule. For
instance, in case of A = (U, A ∪ {d}) with two decision classes, we have:

Pr(X1|E) =
Pr(E|X1)Pr(X1)

Pr(E|X0)Pr(X0) + Pr(E|X1)Pr(X1)
(5)

Remark 2. If we use estimations Pr(E|Xk) = |Xk ∩ E|/|Xk|, then (5) provides
the same value of Pr(Xk|E) as (4). For instance, Pr(d = 1|a1 = 2, a3 = 2) =
(3/5 · 1/2)/(1/10 · 1/2 + 3/5 · 1/2) = 6/7. �

In some cases estimation (4) can provide us with invalid values of probabili-
ties. According to the Bayesian principles, it is then desirable to combine the
inverse probability estimates with the priors expressing background knowledge,
not necessarily derivable from data. We can see it in the following short study:

Example 3. Let us suppose that X1 corresponds to a rare but important tar-
get event like, e.g., some medical pathology. We are going to collect the cases
supporting this event very accurately. However, we are not going to collect in-
formation about all the “healthy” cases as X0. In the medical data sets we can
rather expect the 50:50 proportion between positive and negative examples. It
does not mean, however, that Pr(X1) should be estimated as 1/2. It is question-
able whether the posterior probabilities Pr(X1|E) should be derived from such
data using estimation with |E| in denominator – it is simply difficult to accept
that |E| is calculated as the non-weighted sum of |E ∩ X0| and |E ∩ X1|. �
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2.3 Bayes Factor

Example 3 shows that in some situations the posterior probabilities are not
derivable from data in a credible way. In this paper, we do not claim that this
is a frequent or infrequent situation and we do not focus on any specific real-
life data examples. We simply show that it is still possible to derive valuable
knowledge basing only on the inverse probabilities, in case somebody cannot
trust or simply does not know priors and posteriors.

Our idea to refer to the inverse probabilities originates from the notion of
Bayes factor, which compares the probabilities of the observed evidence E (in-
discernibility class or, equivalently, conjunction of conditional descriptors) under
the assumption concerning a hypothesis Xk (decision class) [4, 6, 15, 20]. In case
of systems with two decision classes, the Bayes factor takes the form of B1

0 defined
by equation (1). It refers to the posterior and prior probabilities, as provided by
equation (2). However, we can restrict to the inverse probabilities, if we do not
know enough about the priors and posteriors occurring in (2).

The Bayes factor can be expressed in various ways, depending on the data
type [15]. In case of decision table real valued conditional attributes, it would be
defined as the ratio of probabilistic densities. For symbolic data, in case of more
than two decision classes, we can consider pairwise ratios

Bk
l =

Pr(E|Xk)
Pr(E|Xl)

(6)

for l �= k, or ratios of the form

Bk
�k =

Pr(E|Xk)
Pr(E|¬Xk)

where ¬Xk =
⋃

l �=k Xl (7)

In [6], it is reported that twice of the logarithm of B1
0 is on the same scale as the

deviance test statistics for the model comparisons. The value of B1
0 is then used

to express a degree of belief in hypothesis X1 with respect to X0, as shown in
Fig. 2. Actually, the scale presented in Fig. 2 is quite widely used by statisticians
while referring to the Bayes factors. We can reconsider this way of hypothesis
verification by using the significance threshold ε0

1 ≥ 0 in the following criterion:

X1 is verified ε0
1-positively, if and only if Pr(E|X0) ≤ ε0

1Pr(E|X1) (8)

For lower values of ε0
1 ≥ 0, the positive hypothesis verification under the evidence

E ∈ U/B requires more significant advantage of Pr(E|X1) over Pr(E|X0). Ac-
tually, it is reasonable to assume that ε0

1 ∈ [0, 1). This is because for ε0
1 = 1, we

simply cannot decide between X1 and X0 (cf. [18]) and for ε0
1 > 1 one should

rather consider X0 instead of X1 (by switching X0 with X1 and using possibly
different ε1

0 ∈ [0, 1) in (8)). Another special case, ε0
1 = 0, corresponds to infinitely

strong evidence for hypothesis X1, yielding Pr(E|X0) = 0. This is the reason
why we prefer to write Pr(E|X0) ≤ ε0

1Pr(E|X1) instead of B1
0 ≥ 1/ε0

1 in (8).
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The B1
0 ranges Corresponding Corresponding ε0

1 Evidence for X1

proposed in [6] 2 log B1
0 ranges ranges based on (8) described as in [6]

less than 1 less than 0 more than 1 negative (support X0)
1 to 3 0 to 2 0.3 to 1 barely worth mentioning
3 to 12 2 to 5 0.1 to 0.3 positive

12 to 150 5 to 10 0.01 to 0.1 strong
more than 150 more than 10 less than 0.01 very strong

Fig. 2. The Bayes factor significance scale proposed in [6], with the corresponding
ranges for ε0

1 ≥ 0 based on criterion (8). The values in the third column are rounded
to better express the idea of working with inequality Pr(E|X0) ≤ ε0

1Pr(E|X1).

3 Rough Sets

3.1 Original Model in Terms of Probabilities

In Subsection 2.1 we mentioned that decision systems can be applied to approx-
imation of the target events by means of indiscernibility classes. A method of
such data based approximation was proposed in [10], as the theory of rough sets.
Given A = (U, A ∪ {d}), B ⊆ A, and Xk ⊆ U , one can express the main idea
of rough sets in the following way: The B-positive, B-negative, and B-boundary
rough set regions (abbreviated as RS-regions) are defined as

POSB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) = 1}

NEGB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) = 0}

BNDB(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ∈ (0, 1)}

(9)

POSB(Xk) is an area of the universe where the occurrence of Xk is certain.
NEGB(Xk) covers an area where the occurrence of Xk is impossible. Finally,
BNDB(Xk) defines an area where the occurrence of Xk is possible but uncertain.
The boundary area typically covers large portion of the universe, if not all. If
BNDB(Xk) = ∅, then Xk is B-definable. Otherwise, Xk is a B-rough set.

Example 4. For A = (U, A ∪ {d}) from Fig. 1 and B = {a1, a3}, we obtain

POSB(X1) = ∅
NEGB(X1) = {u2, u5, u10, u14, u18}
BNDB(X1) = {u1, u3, u4, u6, u7, u8, u9, u11, u12, , u13, u15, u16, u17, u19, u20}

As we can see, X1 is a B-rough set in this case. �
The following basic result emphasizes the decision-making background behind
rough sets. To be sure (enough) about Xk we must be convinced (enough) against
any alternative possibility Xl, l �= k. This is a feature we would like to keep in
mind while discussing extensions of the original rough set model, especially when
the word “enough” becomes to have a formal mathematical meaning.

Proposition 1. Let A = (U, A ∪ {d}), Xk ⊆ U , and B ⊆ A be given. We have
equality

POSB(Xk) =
⋂

l:l �=k NEGB(Xl) (10)
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Proof. This is because Pr(Xk|E) = 1 holds, if and only if for every Xl, l �= k,
there is Pr(Xl|E) = 0. �

The RS-regions can be interpreted also by means of the inverse probabilities,
which was not discussed so far in the literature. We formulate it as a theorem
to emphasize its intuitive importance, although the proof itself is trivial. In
particular, this result will guide us towards drawing a connection between rough
sets and the Bayes factor based testing described in Subsection 2.3.

Theorem 1. Let A = (U, A∪{d}) and B ⊆ A be given. Let the postulate (3) be
satisfied. Consider the k-th decision class Xk ⊆ U . For any E ∈ U/B we obtain
the following characteristics:

E ⊆ POSB(Xk) ⇔ ∀l: l �=kPr(E|Xl) = 0
E ⊆ NEGB(Xk) ⇔ Pr(E|Xk) = 0
E ⊆ BNDB(Xk) ⇔ Pr(E|Xk) > 0 ∧ ∃l: l �=kPr(E|Xl) > 0

(11)

Proof. Beginning with the positive region, we have

∀l: l �=kPr(E|Xl) = 0 ⇔ ∀l: l �=kPr(Xl|E) =
Pr(E|Xl)Pr(Xl)

Pr(E)
= 0

Since
∑r−1

l=0 Pr(Xl|E) = 1, the above is equivalent to Pr(Xk|E) = 1. For the
negative region we have

Pr(E|Xk) = 0 ⇔ Pr(Xk|E) =
Pr(E|Xk)Pr(Xk)

Pr(E)
= 0

Finally, for the boundary region, we can see that

Pr(E|Xk) > 0 ⇔ Pr(Xk|E) > 0
∃l: l �=kPr(E|Xl) > 0 ⇔ ∃l: l �=kPr(Xl|E) > 0 ⇔ Pr(Xk|E) < 1

All the above equivalences follow from the postulate (3), the Bayes rule, and the
fact that probability distributions sum up to 1. �

Remark 3. The formula for POSB(Xk) can be also rewritten as follows:

E ⊆ POSB(Xk) ⇔ Pr(E|Xk) > 0 ∧ ∀l: l �=kPr(E|Xl) = 0 (12)

Pr(E|Xk) > 0 is redundant since conditions (3) and equalities Pr(E|Xl) = 0,
l �= k, force it anyway. However, the above form including Pr(E|Xk) > 0 seems
to be more intuitive. �

Theorem 1 enables us to think about the rough set regions as follows (please
note that interpretation of the positive region is based on characteristics (12)):

1. Object u belongs to POSB(Xk), if and only if the vector B(u) ∈ VB is likely
to occur under the assumption that u supports the event Xk and unlikely to
occur under the assumption that it supports any alternative event Xl, l �= k.
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2. Object u belongs to NEGB(Xk), if and only if the vector B(u) ∈ VB is
unlikely to occur under the assumption that u supports the event Xk.

3. Object u belongs to BNDB(Xk), if and only if the vector B(u) ∈ VB is likely
to occur under the assumption that u supports Xk but this is also the case
for some alternative events Xl, l �= k.

As a conclusion, the rough set model can be formulated without using the prior
and posterior probabilities. It means that in case of rough sets we do not need
any kind of background knowledge even if the only probabilities reasonably rep-
resented in data are the inverse ones. The rough set regions are not influenced
by the changes of the prior probabilities. We do not even need the existence
of those probabilities – postulate (3) could be then read as a requirement that
every decision class under consideration is supported by some objects and that
some alternative decisions are supported as well.

3.2 Variable Precision Rough Set Model

Although presented by means of probabilities in the previous subsection, the
rough set regions were originally defined using simple set theoretic notions,
namely inclusion (for positive regions) and empty intersection (for negative re-
gions). Probabilities then occurred in various works [2, 13, 18, 21–24] to enable
the initial rough set model to deal more flexibly with the indiscernibility classes
almost included and almost excluded from the target events. In other words, one
can use the probabilities to soften the requirements for certainty and impossibil-
ity in the rough set model. It provides better applicability to practical problems,
where even a slight increase or decrease of probabilities can be as important as
expecting them to equal 1 or 0.

The first method using non-0-1 posterior probabilities in rough sets is the
Variable Precision Rough Set (VPRS ) model [24]. It is based on parameter-
controlled grades of the posterior probabilities in defining the approximation
regions. The most general asymmetric VPRS model definition relies on the values
of the lower and upper limit certainty thresholds α and β1. To deal with systems
with many decision classes, we will understand α and β as vectors

α = (α0, . . . , αr−1) and β = (β0, . . . , βr−1) (13)

where αk and βk refer to decision classes Xk, k = 0, . . . , r − 1, r = |Vd|. Let
system A = (U, A∪ {d}) and B ⊆ A be given. The VPRS-regions are defined as
follows:

POSβ
B(Xk) =

⋃{E ∈ U/B : Pr(Xk|E) ≥ βk}
NEGα

B(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ≤ αk}

BNDα,β
B (Xk) =

⋃{E ∈ U/B : Pr(Xk|E) ∈ (αk, βk)}
(14)

1 Originally, the notation l, u was proposed for the lower and upper certainty thresh-
olds. We use α, β instead to avoid coincidence with notation for decision classes,
where l may occur as the index, and with notation for elements of the universe,
often denoted by u ∈ U .
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The β-positive region POSβ
B(Xk) is defined by the upper limit parameter βk,

which reflects the least acceptable degree of Pr(Xk|E). Intuitively, βk represents
the desired level of improved prediction accuracy when predicting the event
Xk based on the information that event E occurred. The α-negative region
NEGα

B(Xk) is controlled by the lower limit parameter αk. It is an area where
the occurrence of the set Xk is significantly, as expressed in terms of αk, less
likely than usually. Finally, the (α, β)-boundary region BNDα,β

B (Xk) is a ”gray”
area where there is no sufficient bias towards neither Xk nor its complement.

As proposed in [25], we suggest the following inequalities to be satisfied while
choosing the VPRS parameters for particular decision systems:

0 ≤ αk < Pr(Xk) < βk ≤ 1 (15)

The reason lays in interpretation of the VPRS-regions. In case of POSβ
B(Xk),

the improvement of prediction accuracy is possible only if βk > Pr(Xk). In case
of NEGα

B(Xk), the word “usually” should be understood as the prior proba-
bility Pr(Xk). Therefore, we should be sure to choose αk < Pr(Xk) to obtain
practically meaningful results.

Another explanation of (15) is that without it we could obtain E ∈ U/B con-
tained in negative or positive VPRS-regions of all decision classes in the same
time. This is obviously an extremely unwanted situation since we should not be
allowed to verify negatively all hypotheses in the same time. We could be un-
certain about all the decision classes, which would correspond to the boundary
regions equal to U for all decision classes, but definitely not negatively (posi-
tively) convinced about all of them.

Remark 4. The above explanation of postulate (15) should be followed by re-
calling the meaning of Proposition 1 in the previous subsection. Here, it should
be connected with the following duality property of the VPRS regions [24, 25]:
For A = (U, A∪ {d}), Vd = {0, 1}, let us consider the limits satisfying equalities

α0 + β1 = α1 + β0 = 1 (16)

Then we have the following identities:

POSβ
B(X0) = NEGα

B(X1) and POSβ
B(X1) = NEGα

B(X0) (17)

Further, equations (16) can be satisfied consistently with (15). This is because
0 ≤ α0 < Pr(X0) < β0 ≤ 1 is equivalent to 1 ≥ β1 > Pr(X1) > α1 ≥ 0. �
Identities (17) are important for understanding the nature of rough-set-like
decision-making and its correspondence to the statistical hypothesis testing. It
would be desirable to extend them onto the case of more than two decision
classes, although it is not obvious how to approach it.

3.3 Further Towards the Inverse Probabilities

In the context of machine learning, the VPRS model’s ability to flexibly control
approximation regions’ definitions allows for efficient capturing probabilistic re-
lations existing in data. However, as we discussed before, the estimates of the
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posterior probabilities are not always reliable. Below we rewrite VPRS in terms
of the inverse probabilities, just like we did in case of the original RS-regions.

Proposition 2. Let A = (U, A ∪ {d}), Vd = {0, 1}, and B ⊆ A be given. Con-
sider parameters α = (α0, α1), β = (β0, β1) such that conditions (15) and (16)
are satisfied. Then we have inequalities

POSβ
B(X0) = NEGα

B(X1) =
⋃{E ∈ U/B : Pr(E|X1) ≤ ε1

0Pr(E|X0)}
POSβ

B(X1) = NEGα
B(X0) =

⋃{E ∈ U/B : Pr(E|X0) ≤ ε0
1Pr(E|X1)} (18)

where coefficients ε1
0, ε

0
1 defined as

ε1
0 =

α1Pr(X0)
β0Pr(X1)

and ε0
1 =

α0Pr(X1)
β1Pr(X0)

(19)

belong to the interval [0, 1).

Proof. Consider α0 and β1 such that α0 +β1 = 1 (the case of α01 and β0 can be
shown analogously). We want to prove

Pr(X1|E) ≥ β1 ⇔ α0 ≥ Pr(X0|E) ⇔ Pr(E|X0) ≤ α0Pr(X1)
β1Pr(X0)

Pr(E|X1) (20)

We know that two first above inequalities are equivalent. By combining them
together, we obtain the third equivalent inequality (its equivalence to both
Pr(X1|E) ≥ β1 and Pr(X0|E) ≤ α0 can be easily shown by contradiction):

Pr(X1|E) ≥ β1 ⇔ α0 ≥ Pr(X0|E) ⇔ α0Pr(X1|E) ≥ β1Pr(X0|E) (21)

It is enough to apply identity (2) to realize that the third inequalities in (20)
and (21) are actually the same ones. It remains to show that ε1

0, ε
0
1 ∈ [0, 1).

It follows from the assumption (15). For instance, we have inequality ε1
0 < 1

because α1 < Pr(X1) and Pr(X0) < β0. �
The above correspondence can be used to draw a connection between VPRS and
the statistical reasoning models. It is possible to refer inequality Pr(E|X0) ≤
ε0
1Pr(E|X1), rewritten as

B1
0 ≥ β1Pr(X0)

α0Pr(X1)
(22)

to the Bayes factor based statistical principles discussed e.g. in [20]. However,
the remaining problem is that we need to use Pr(X0) and Pr(X1) explicitly in
(22), which is often too questionable from practical point of view.

In [18], another version of VPRS is considered. The idea is to detect any
decrease/increase of belief in decision classes. The rough set region definitions
proposed in [18] look as follows:

POS∗
B(X1) =

⋃{E ∈ U/B : Pr(X1|E) > Pr(X1)}
NEG∗

B(X1) =
⋃{E ∈ U/B : Pr(X1|E) < Pr(X1)}

BND∗
B(X1) =

⋃{E ∈ U/B : Pr(X1|E) = Pr(X1)}
(23)

which can be equivalently expressed as follows (cf. [19]):
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POS∗
B(X1) =

⋃{E ∈ U/B : Pr(E|X1) > Pr(E|X0)}
NEG∗

B(X1) =
⋃{E ∈ U/B : Pr(E|X1) < Pr(E|X0)}

BND∗
B(X1) =

⋃{E ∈ U/B : Pr(E|X1) = Pr(E|X0)}
(24)

This simple interpretation resembles the VPRS characteristics provided by Pro-
position 2, for ε1

0 and ε0
1 tending to 1. It also corresponds to the limit ε0

1 → 1
applied to inequality Pr(E|X0) ≤ εPr(E|X1) in the Bayes factor criterion (8).
We could say that according to the scale illustrated by Fig. 2 in Subsection 2.3 the
region POS∗

B(X1) gathers any, even barely worth mentioning but still positive,
evidence for X1. It is completely opposite to the original rough set model. Indeed
POSB(X1) gathers, according to Theorem 1, only infinitely strong evidence for
X1. Let us summarize it as follows:

1. Object u belongs to POSB(X1) (to POS∗
B(X1)), if and only if X1 can be

positively verified under the evidence of B(u) at the maximal (minimal) level
of statistical significance, expressed by (8) for ε0

1 = 0 (ε0
1 → 1).

2. Object u belongs to NEGB(X1) (to NEG∗
B(X1)), if and only if X1 can be

negatively verified under the evidence of B(u) at the maximal (minimal)
level of significance (we replace X0 and X1 and use ε1

0 instead of ε0
1 in (8)).

3. Object u belongs to BNDB(X1) (to BND∗
B(X1)), if and only if it is not suffi-

cient to verify X1 neither positively nor negatively at the maximal (minimal)
level of significance under the evidence of B(u).

As a result, we obtain two models – the original rough set model and its modi-
fication proposed in [18] – which refer to the Bayes factor scale in two marginal
ways. They also correspond to special cases of VPRS, as it is rewritable by means
of the inverse probabilities following Proposition 2. They both do not need to
base on the prior or posterior probabilities, according to characteristics (11) and
(24). From this perspective, the main challenge of this article is to fill the gap
between these two opposite cases of involving the Bayes factor based methodol-
ogy into the theory of rough sets. An additional challenge is to extend the whole
framework to be able to deal with more than two target events, as it was stated
by Theorem 1 in case of the original RS-regions.

4 Rough Bayesian Model

4.1 RB for Two Decision Classes

After recalling basic methods for extracting probabilities from data and the
VPRS-like extensions of rough sets, we are ready to introduce a novel extension
based entirely on the inverse probabilities and the Bayes factor. To prepare
the background, let us still restrict to systems with two decision classes. Using
statistical terminology, we interpret classes X1 and X0 as corresponding to the
positive and negative verification of some hypothesis.

Let us refer to the above interpretation of the RS-regions originating from
substitution of ε0

1 = 0 to the criterion (8). By using positive values of ε0
1, we

can soften the requirements for the positive/negative verification. In this way
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ε0
1 ∈ [0, 1) plays a role of a degree of the significance approximation. We propose

the following model related to this degree. We will refer to this model as to the
Rough Bayesian model because of its relationship to Bayes factor (cf. [17]).

Definition 1. Let A = (U, A ∪ {d}), Vd = {0, 1}, and B ⊆ A be given. For any
parameters ε = (ε1

0, ε
0
1), ε1

0, ε
0
1 ∈ [0, 1), we define the B-positive, B-negative, and

B-boundary rough Bayesian regions (abbreviated as RB-regions) as follows (the
regions for X0 are defined analogously):

BAYPOS ε
B(X1) =

⋃{E ∈ U/B : Pr(E|X0) ≤ ε0
1Pr(E|X1)}

BAYNEG ε
B(X1) =

⋃{E ∈ U/B : Pr(E|X1) ≤ ε1
0Pr(E|X0)}

BAYBND ε
B(X1) =

⋃{E ∈ U/B : Pr(E|X0) > ε0
1Pr(E|X1)∧

Pr(E|X1) > ε1
0Pr(E|X0)}

(25)

Remark 5. The choice of ε1
0 and ε0

1 is a challenge comparable to the case of
other parameter-controlled models, e.g. VPRS based on the threshold vectors
α and β. It is allowed to put ε1

0 = ε0
1 and use a common notation ε ∈ [0, 1)

for both coefficients. It obviously simplifies (but does not solve) the problem of
parameter tuning. Further discussion with that respect is beyond the scope of
this particular article and should be continued in the nearest future. �

Remark 6. As in Subsection 2.3, we prefer not to use the Bayes factor ratio
explicitly because of the special case of zero probabilities. However, if we omit
this case, we can rewrite the RB positive/negative/boundary regions using in-
equalities B1

0 ≥ 1/ε0
1, B0

1 ≥ 1/ε1
0, and max{B0

1ε1
0, B

1
0ε0

1} < 1, respectively, where
B0

1 = Pr(E|X0)/Pr(E|X1) and B0
1 = Pr(E|X1)/Pr(E|X0). �

Proposition 3. For ε = (0, 0), the RB-regions are identical with the RS-regions.

Proof. Derivable directly from Theorem 12. �

Below we provide possibly simplest way of understanding the RB-regions:

1. Object u belongs to BAYPOS ε
B(X1), if and only if B(u) is significantly (up

to ε0
1) more likely to occur under X1 than under alternative hypothesis X0.

2. Object u belongs to BAYNEG ε
B(X1), if and only if the alternative hypothesis

X0 makes B(u) significantly more likely (up to ε1
0) than X1 does.

3. Object u belongs to BAYBND ε
B(X1), if and only if it is not significantly

more likely under X1 than under X0 but also X0 does not make B(u) sig-
nificantly more likely than X1 does.

Another interpretation refers to identity (2). It shows that by using condition (8)
we actually require that the increase of belief in X0 given E, expressed by
Pr(X0|E)/Pr(X0), should be ε-negligibly small with respect to the increase of
belief in X1, that is that Pr(X0|E)/Pr(X0) ≤ ε0

1Pr(X1|E)/Pr(X1). According

2 Although we refer here to the special case of two decision classes, the reader can
verify that this proposition is also true for more general case discussed in the next
subsection.
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to yet another, strictly Bayesian interpretation, we are in BAYPOS ε
B(X1), if

and only if the posterior odds Pr(X1|E)/Pr(X0|E) are ε0
1-significantly greater

than the prior odds Pr(X1)/Pr(X0). Identity (2) also shows that we do not need
neither Pr(Xk|E) nor Pr(Xk) while comparing the above changes in terms of
the belief gains and/or the prior and posterior odds.

The Rough Bayesian model enables us to test the target events directly
against each other. For ε0

1 tending to 1, we can replace Pr(E|X0) ≤ ε0
1Pr(E|X1)

by Pr(E|X0) < Pr(E|X1), as considered in Subsection 3.3. Also, across the
whole range of ε0

1 ∈ [0, 1), we obtain the following characteristics, complemen-
tary to Proposition 2:

Proposition 4. Let ε = (ε1
0, ε

0
1), ε1

0, ε
0
1 ∈ [0, 1), and A = (U, A ∪ {d}) with

Vd = {0, 1} be given. The RB-regions are identical with the VPRS-regions for
the following parameters:

αε
0 =

ε0
1Pr(X0)

ε0
1Pr(X0) + Pr(X1)

and βε
0 =

Pr(X0)
Pr(X0) + ε1

0Pr(X1)

αε
1 =

ε1
0Pr(X1)

ε1
0Pr(X1) + Pr(X0)

and βε
1 =

Pr(X1)
Pr(X1) + ε0

1Pr(X0)

Proof. Let B ⊆ A and E ∈ U/B be given. We have to show the following:

Pr(E|X0) ≤ ε0
1Pr(E|X1) ⇔ Pr(X1|E) ≥ βε

1 ⇔ Pr(X0|E) ≤ αε
0

Pr(E|X1) ≤ ε1
0Pr(E|X0) ⇔ Pr(X1|E) ≤ αε

1 ⇔ Pr(X0|E) ≥ βε
0

(26)

Let us show, for example (the rest is analogous), that

Pr(E|X0) ≤ ε0
1Pr(E|X1) ⇔ Pr(X1|E) ≥ Pr(X1)

Pr(X1) + ε0
1Pr(X0)

(27)

Using the Bayes rule we rewrite the right above inequality as follows:

Pr(E|X1)Pr(X1)
Pr(E|X1)Pr(X1) + Pr(E|X0)Pr(X0)

≥

≥ Pr(E|X1)Pr(X1)
Pr(E|X1)Pr(X1) + ε0

1Pr(E|X1)Pr(X0)

The only difference is now between the term Pr(E|X0) at the left side and the
term ε0

1Pr(E|X1) at the right side. Hence, (27) becomes clear. �

Example 5. Let us consider the data table from Fig. 1, for B = {a1, a3} and
ε1
0 = ε0

1 = 1/5. We obtain the following RB-regions:

BAYPOS1/5
B (X1) = {u3, u6, u8, u9, u15, u19, u20}

BAYNEG1/5
B (X1) = {u2, u5, u10, u14, u18}

BAYBND1/5
B (X1) = {u1, u4, u7, u11, u12, u13, u16, u17}
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In comparison to the original RS-regions, the case of a1 = 2 and a3 = 2 starts to
support the B-positive RB-region of X1. If we can assume that Pr(X1) = 1/2,
as derivable from the considered data table, then we obtain analogous result in
terms of the VPRS-regions for

α
1/5
1 =

1/5 · 1/2
1/5 · 1/2 + (1 − 1/2)

=
1
6

and β
1/5
1 =

1/2
1/2 + 1/5(1 − 1/2)

=
5
6

In particular, for E = {u ∈ U : a1(u) = 2 ∧ a3(u) = 2}, we get Pr(X1|E) = 6/7
which is more than β

1/5
1 = 5/6. �

In this way, the Rough Bayesian model refers to the VPRS idea of handling
the posterior probabilities. We can see that coefficients αε

k, βε
k, k = 0, 1, satisfy

assumption (15). For instance we have

0 ≤ ε0
1Pr(X0)

ε0
1Pr(X0) + Pr(X1)

< Pr(X0) <
Pr(X0)

Pr(X0) + ε1
0Pr(X1)

≤ 1

where inequalities hold, if and only if ε1
0, ε

0
1 ∈ [0, 1). The property (17) is satisfied

as well, e.g.:

ε0
1Pr(X0)

ε0
1Pr(X0) + Pr(X1)

+
Pr(X1)

Pr(X1) + ε0
1Pr(X0)

= 1

We can summarize the obtained results as follows:

Theorem 2. Let A = (U, A∪{d}), Vd = {0, 1}, and B ⊆ A be given. The VPRS
and RB models are equivalent in the following sense:

1. For any α = (α0, α1) and β = (β0, β1) satisfying (15) and (16), there exists
ε(α, β) ∈ [0, 1)× [0, 1) such that for k = 0, 1 we have

BAYPOS ε(α,β)
B (Xk) = POS β

B(Xk)
BAYNEG ε(α,β)

B (Xk) = NEG α
B(Xk)

BAYBND ε(α,β)
B (Xk) = BND α,β

B (Xk)

2. For any ε ∈ [0, 1)× [0, 1), there exist α(ε) and β(ε) satisfying (15) and (16)
such that for k = 0, 1 we have

POS β(ε)
B (Xk) = BAYPOS ε

B(Xk)
NEG α(ε)

B (Xk) = BAYNEG ε
B(Xk)

BND α(ε),β(ε)
B (Xk) = BAYBND ε

B(Xk)

Proof. Derivable directly from Propositions 2 and 4. �

It is important to remember that Theorem 2 holds only for Vd = {0, 1}. We will
address more general case in the next subsections. For now, given Vd = {0, 1},
let us note that the advantage of the RB model with respect to VPRS is that
any change of Pr(X1) results in automatic change of the lower and upper VPRS
thresholds. It can be illustrated as follows:



Rough Sets and Bayes Factor 217

Example 6. Let us continue the previous example but for Pr(X1) = 1/1000, as if
X1 corresponded to a rare medical pathology discussed in Example 3. There is no
sense to keep the upper limit for Pr(X1|E) equal to 5/6, so the VPRS parameters
should be changed. However, there is no change required if we rely on the RB-
regions. With the same ε1

0 = ε0
1 = 1/5 we simply get different interpretation in

terms of the posterior probabilities. Namely, we recalculate the VPRS degrees
as

α
1/5
1 =

1/5 · 1/1000
1/5 · 1/1000 + (1 − 1/1000)

�
1

5000
and β

1/5
1 �

1
200

One can see that this time β
1/5
1 would have nothing in common with previously

calculated Pr(X1|E) = 6/7. However, using standard estimation Pr(X1|E) =
|Xk ∩E|/|E| is not reasonable in this situation. We should rather use the Bayes
rule leading to the following result:

Pr(d = 1|a1 = 2, a3 = 2) =
3/5 · 1/1000

1/10 · (1 − 1/1000) + 3/5 · 1/1000
=

2
335

The posterior probability becomes then to be referrable to β
1/5
1 . �

As a result, we obtain a convenient method of defining the rough-set-like regions
based on the inverse probabilities, which – if necessary – can be translated onto
the parameters related to more commonly used posterior probabilities. However,
the Rough Bayesian model can be applied also when such translation is impos-
sible, that is when the prior probabilities are unknown or even undefinable. The
RB-regions have excellent statistical interpretation following from their connec-
tions with the Bayes factor. Actually, we obtain a kind of variable significance
rough set model, as it is parameterized by the significance thresholds ε = (ε1

0, ε
0
1).

The choice of ε refers to the choice of significance levels illustrated by Fig. 2,
Subsection 2.3. We can draw a direct connection between the RB-regions and
particular states of the statistical verification process. We can also base on sta-
tistical apparatus while tuning ε = (ε1

0, ε
0
1), with two important special cases –

the original rough set model for ε1
0 = ε0

1 = 0 and the model introduced in [18]
for ε1

0, ε
0
1 tending to 1.

4.2 RB for More Decision Classes

The way of comparing the inverse probabilities in Definition 1 has a natural
extension onto the case of more decision classes. Below we reconsider the Rough
Bayesian model for such a situation. Please note that the regions from Definition
1 are the special cases of the following ones.

Definition 2. Let A = (U, A ∪ {d}), Vd = {0, . . . , r − 1}, and B ⊆ A be given.
Consider matrix

ε =







∗ ε0
1 ... ε0

r−1

ε1
0 ∗ :
: ∗ εr−2

r−1

εr−1
0 ... εr−1

r−2 ∗





 (28)
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U a1 a2 a3 a4 a5 d

u1 1 1 0 1 2 0
u2 0 0 0 2 2 2
u3 2 2 2 1 1 1
u4 0 1 2 2 2 1
u5 2 1 1 0 2 0
u6 2 2 2 1 1 1
u7 0 1 2 2 2 2
u8 2 2 2 1 1 1
u9 2 2 2 1 1 1
u10 0 0 0 2 2 0

U a1 a2 a3 a4 a5 d

u11 1 2 0 0 2 0
u12 1 1 0 1 2 1
u13 0 1 2 2 2 1
u14 2 1 1 0 2 0
u15 2 2 2 1 1 2
u16 1 1 0 1 2 1
u17 1 1 0 1 2 2
u18 2 1 1 0 2 2
u19 2 2 2 1 1 1
u20 2 2 2 1 1 1

Fig. 3. A = (U,A ∪ {d}), U = {u1, . . . , u20}, A = {a1, . . . , a5}. Decision classes:
X0 = {u1, u5, u10, u11, u15}, X1 = {u3, u4, u6, u8, u9, u12, u13, u16, u19, u20}, and X2 =
{u2, u7, u14, u17, u18}.

where εl
k ∈ [0, 1), for k �= l. We define the B-positive, B-negative, and B-

boundary RB-regions as follows:

BAYPOS ε
B(Xk) =

⋃{E ∈ U/B : ∀l: l �=kPr(E|Xl) ≤ εl
kPr(E|Xk)}

BAYNEG ε
B(Xk) =

⋃{E ∈ U/B : ∃l: l �=kPr(E|Xk) ≤ εk
l Pr(E|Xl)}

BAYBND ε
B(Xk) =

⋃{E ∈ U/B : ∃l: l �=kPr(E|Xl) > εl
kPr(E|Xk)∧

∀l: l �=kPr(E|Xk) > εk
l Pr(E|Xl)}

(29)

Remark 7. As in Remark 6, we could use respectively conditions minl:l �=k Bk
l ≥

1/εl
k, maxl:l �=k Bl

k ≥ 1/εk
l , and max

{
minl:l �=k Bk

l εl
k, maxl:l �=k Bl

kεk
l

}
< 1, where

the ratios Bk
l are defined by (6). The only special case to address would corre-

spond to the zero inverse probabilities. �

Let us generalize the previous interpretation of the RB-regions as follows:

1. Object u belongs to BAYPOS ε
B(Xk), if and only if B(u) is significantly

more likely to occur under Xk than under any other hypothesis Xl, l �= k.
2. Object u belongs to BAYNEG ε

B(Xk), if and only if there is an alternative
hypothesis Xl, which makes B(u) significantly more likely than Xk does.

3. Object u belongs to BAYBND ε
B(Xk), if and only if B(u) is not significantly

more likely under Xk than under all other Xl but there is also no alternative
hypothesis, which makes B(u) significantly more likely than Xk does.

Remark 8. As in case of two decision classes, we can consider a simplified model
with εl

k = ε, for every k, l = 0, . . . , r − 1, k �= l. Appropriate tuning of many
different parameters in the matrix (28) could be difficult technically, especially
for large r = |Vd|. The examples below show that the multi-decision RB model
has a significant expressive power even for one unified ε ∈ [0, 1). Therefore, we
are going to put a special emphasis on this case in the future applications. �

Example 7. Fig. 3 illustrates decision system A = (U, A ∪ {d}) with Vd =
{0, 1, 2}. Actually, it results from splitting the objects supporting X0 in Fig. 1
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onto two 5-object parts, now corresponding to decision classes X0 and X2. For
B = {a1, a3}, we have five B-indiscernibility classes. We list them below, with
the corresponding inverse probabilities.

U/B Conditions P (Ei|X0) P (Ei|X1) P (Ei|X2)
E1 a1 = 1, a3 = 0 2/5 1/5 1/5
E2 a1 = 0, a3 = 0 1/5 0 1/5
E3 a1 = 2, a3 = 2 0 3/5 1/5
E4 a1 = 0, a3 = 2 0 1/5 1/5
E5 a1 = 2, a3 = 1 2/5 0 1/5

Let us start with the RS-regions. We obtain the following characteristics:

Decisions POSB(Xk) NEGB(Xk) BNDB(Xk)
X0 ∅ E3 ∪ E4 E1 ∪ E2 ∪ E5

X1 ∅ E2 ∪ E5 E1 ∪ E3 ∪ E4

X2 ∅ ∅ U

Now, let us consider ε = 1/3. We obtain the following RB-regions:

Decisions BAYPOS1/3
B (Xk) BAYNEG1/3

B (Xk) BAYBND1/3
B (Xk)

X0 ∅ E3 ∪ E4 E1 ∪ E2 ∪ E5

X1 E3 E2 ∪ E5 E1 ∪ E4

X2 ∅ E3 U \ E3

While comparing to the RS-regions, we can see that:

1. BAYPOS1/3
B (X1) and BAYNEG1/3

B (X2) start to contain E3.
2. BAYBND1/3

B (X1) and BAYBND1/3
B (X2) do not contain E3 any more.

This is because we have both P (E3|X0) ≤ 1/3 ∗ P (E3|X1) and P (E3|X2) ≤
1/3∗P (E3|X1). It means that E3 at least three times more likely given hypothesis
X1 than given X0 and X2. According to the scale proposed in [4] and presented
in Subsection 2.3, we could say that E3 is a positive evidence for X1. �

As a conclusion for this part, we refer to Proposition 1 formulated for the original
rough set model as an important decision-making property. We can see that the
Rough Bayesian model keeps this property well enough to disallow intersections
between the positive and negative RB-regions of different decision classes. We
will go back to this topic in the next subsection, while discussing the VPRS
model for more than two decision classes.

Proposition 5. Let A = (U, A ∪ {d}), Xk ⊆ U , and B ⊆ A be given. Consider
matrix ε given by (28) for εl

k ∈ [0, 1), k �= l. We have the following inclusion:

BAYPOS ε
B(Xk) ⊆ ⋂

l:l �=k BAYNEG ε
B(Xl) (30)

Moreover, if inequalities
εl

k ≥ εm
k εl

m (31)

hold for every mutually different k, l, m, then the equality holds in (30).
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Proof. Assume E ⊆ BAYPOS ε
B(Xk) for a given k = 0, . . . , r − 1. Consider any

Xm, m �= k. We have E ⊆ BAYNEG ε
B(Xm) because there exists l �= m such

that Pr(E|Xm) ≤ εm
l Pr(E|Xl). Namely, we can choose l = k.

Now, let us assume that E ⊆ BAYNEG ε
B(Xl) for every Xl, l �= k. Then,

for any Xl0, l0 �= k there must exist Xl1, l1 �= l0, such that Pr(E|Xl0) ≤
εl0

l1Pr(E|Xl1). There are two possibilities: If l1 = k, then we reach the goal – we
wanted to show that Pr(E|Xl0) ≤ εl0

k Pr(E|Xk) for any Xl0, l0 �= k. If l1 �= k,
then we continue with l1. Since l1 �= k, there must exist Xl2, l2 �= l1, such that
Pr(E|Xl1) ≤ εl1

l2Pr(E|Xl2). Given inequalities (31), we get

Pr(E|Xl0) ≤ εl0
l1Pr(E|Xl1) ≤ εl0

l1ε
l1
l2Pr(E|Xl2) ≤ εl0

l2Pr(E|Xl2)

Therefore, we can apply the same procedure to every next l2 as we did with
l1 above. At each next step we must select a brand new decision class – this is
because the ε-matrix takes the values within [0, 1). Since the number of decisions
is finite, we must eventually reach the moment when a new l2 equals k. �
Corollary 1. Let A = (U, A∪{d}) and B ⊆ A be given. Consider the RB model
with unified parameter ε ∈ [0, 1), that is εl

k = ε for every k, l = 0, . . . , r−1, k �= l.
Then we have always BAYPOS ε

B(Xk) =
⋂

l:l �=k BAYNEG ε
B(Xl).

Proof. Directly from Proposition 5. �

4.3 VPRS for More Decision Classes

The question is whether the Rough Bayesian model is still rewritable in terms of
the posterior probabilities, similarly to the case of two decision classes described
by Theorem 2. Let us first discuss requirements for a posterior probability based
rough set model in such a case. In Subsection 3.2, we used the parameter vectors
α = (α0, . . . , αr−1) and β = (β0, . . . , βr−1) satisfying condition (15). One would
believe that if a unique Xk is supported strongly enough, then the remaining
classes cannot be supported in a comparable degree. However, this is the case
only for two complementary decision classes. If |Vd| > 2, then there might be
two different classes Xk and Xl, k �= l, satisfying inequalities Pr(Xk|E) ≥ βk

and Pr(Xl|E) ≥ βl. It would lead to supporting two decisions in the same time,
which is an unwanted situation.

Example 8. Consider the decision system illustrated in Fig. 3. Please note that
Pr(X0) = Pr(X2) = 1/4 and Pr(X1) = 1/2. Let us choose parameters α =
(1/10, 1/4, 1/10) and β = (13/20, 3/4, 13/20). One can see that inequalities (15)
are then satisfied. For B = {a1, a3}, we have five B-indiscernibility classes, as in
Example 7. Their corresponding posterior probabilities look as follows:

U/B Conditions P (X0|Ei) P (X1|Ei) P (X2|Ei)
E1 a1 = 1, a3 = 0 2/5 2/5 1/5
E2 a1 = 0, a3 = 0 1/2 0 1/2
E3 a1 = 2, a3 = 2 0 6/7 1/7
E4 a1 = 0, a3 = 2 0 2/3 1/3
E5 a1 = 2, a3 = 1 2/3 0 1/3



Rough Sets and Bayes Factor 221

We obtain the following characteristics, if we keep using conditions (14):

Decisions POSβ
B(Xk) NEGα

B(Xk) BNDα,β
B (Xk)

X0 E5 E3 ∪ E4 E1 ∪ E2

X1 E3 E2 ∪ E5 E1 ∪ E4

X2 ∅ ∅ U

Luckily enough, we do not obtain non-empty intersections between positive
regions of different decision classes. However, there is another problem visible: E5

(E3) is contained in the positive region of X0 (X1) but it is not in the negative
region of X2. It is a lack of a crucial property of the rough-set-like regions,
specially emphasized by Propositions 1 and 5. �
Obviously, one could say that α and β in the above example are chosen artifi-
cially to yield the described non-empty intersection situation. However, even if
this is a case, it leaves us with the problem how to improve the requirements
for the VPRS parameters to avoid such situations. We suggest embedding the
property analogous to those considered for the RS and RB models directly into
the definition. In this way, we can also simplify the VPRS notation by forgetting
about the upper grades β. This is a reason why we refer to the following model
as to the simplified VPRS model.

Definition 3. Let A = (U, A ∪ {d}) and B ⊆ A be given. Consider vector
α = (α0, . . . , αr−1) such that inequalities

0 ≤ αk < Pr(Xk) (32)

are satisfied for every k = 0, . . . , r−1. The simplified VPRS-regions are defined
as follows:

POSα
B(Xk) =

⋃{E ∈ U/B : ∀l: l �=kPr(Xl|E) ≤ αl}
NEGα

B(Xk) =
⋃{E ∈ U/B : Pr(Xk|E) ≤ αk}

BNDα
B(Xk) =

⋃{E ∈ U/B : Pr(Xk|E) > αk ∧ ∃l: l �=kPr(Xl|E) > αl}
(33)

Proposition 6. Let A = (U, A∪{d}), Xk ⊆ U , B ⊆ A, and α = (α0, . . . , αr−1)
be given. We have the following equality:

POS α
B(Xk) =

⋂
l:l �=k NEG α

B(Xl) (34)

Proof. Directly from (33). �
The form of (33) can be compared with the way we expressed the original RS-
regions by (11). There, we defined the positive region by means of conditions for
the negative regions of all other classes, exactly like for simplified VPRS above.
Further, we can reformulate the meaning of Remark 3 as follows:

Proposition 7. Let A = (U, A∪{d}), B ⊆ A, E ∈ U/B, and α = (α0, ..., αr−1)
satisfying (32) be given. Let us define vector β = (β0, . . . , βr−1) in the following
way, for every k = 0, . . . , r − 1:

βk = 1 −
∑

l:l �=k

αk (35)
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Then, for any Xk, we have the following equivalence:

E ⊆ POSα
B(Xk) ⇔ Pr(Xk|E) ≥ βk ∧ ∀l: l �=kPr(Xl|E) ≤ αl}

Moreover, vectors α and β satisfy together the assumption (15).

Proof. Directly based on the fact that
∑r−1

l=0 Pr(Xl|E) = 1. �

In this way one can see that by removing β = (β0, . . . , βr−1) from the definition
of VPRS we do not change its meaning. Vector β is fully recoverable from α
using equations (35), which actually generalize postulate (16). In particular, for
a special case of two decision classes, we obtain the following result.

Proposition 8. Let Vd = {0, 1} and let equalities (16) be satisfied. Then Defi-
nition 3 is equivalent to the original VPRS model.

Proof. For two decision classes, given (16), conditions Pr(Xk|E) ≥ βk and
∀l: l �=kPr(Xl|E) ≤ αl are equivalent – there is only one different l = 0, 1 and
one of equalities (17) must take place. Therefore, POSα

B(Xk) takes the same
form as in (14). Negative regions are formulated directly in the same way as in
(14). Hence, the boundary regions must be identical as well. �

Example 9. Let us go back to the three-decision case illustrated by Fig. 3 and
consider parameters α = (1/10, 1/4, 1/10), as in Example 8. Let us notice that
the vector β = (13/20, 3/4, 13/20) from that example can be calculated from
α using (35). Now, let us compare the previously obtained regions with the
following ones:

Decisions POSα
B(Xk) NEGα

B(Xk) BNDα
B(Xk)

X0 ∅ E3 ∪ E4 E1 ∪ E2 ∪ E5

X1 ∅ E2 ∪ E5 E1 ∪ E3 ∪ E4

X2 ∅ ∅ U

Although, on the one hand, the crucial property (34) is now satisfied, we do
not get any relaxation of conditions for the positive regions with respect to the
original RS-regions analyzed for the same system in Example 7. The problem
with Definition 3 seems to be that even a very good evidence for Xk can be
ignored (put into boundary) because of just one other Xl, l �= k, supported by
E to a relatively (comparing to Xk) low degree. The RB-regions presented in
Example 7 turn out to be intuitively more flexible with handling the data based
probabilities. We try to justify it formally below. �

After introducing a reasonable extension (and simplification) of VPRS for the
multi-decision case, we are ready to compare it – as an example of the posterior
probability based methodology – to the Rough Bayesian model. Since it is an
introductory study, we restrict ourselves to the simplest case of RB, namely to
the unified ε-matrix (28), where εl

k = ε for every k, l = 0, . . . , r − 1, k �= l, for
some ε ∈ [0, 1). It refers to an interesting special case of simplified VPRS, where

α0(1 − Pr(X0))
(1 − α0)Pr(X0)

= . . . =
αr−1(1 − Pr(Xr−1))
(1 − αr−1)Pr(Xr−1)

(36)
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According to (36) the parameters for particular decision classes satisfy inequal-
ities (32) in a proportional way. Its advantage corresponds to the problem of
tuning vectors α = (α0, . . . , αr−1) for large values of r = |Vd|. Given (36) we can
handle the whole α using a single parameter:

Proposition 9. Let A = (U, A∪{d}), B ⊆ A, and α = (α0, . . . , αr−1) satisfying
both (32) and (36) be given. There exists ε ∈ [0, 1), namely

ε =
αk(1 − Pr(Xk))
(1 − αk)Pr(Xk)

for arbitrary k = 0, . . . , r − 1 (37)

such that for every k = 0, . . . , r − 1 the value of αk is derivable as

αk =
εPr(Xk)

εPr(Xk) + (1 − Pr(Xk))
(38)

Proof. It is enough to substitute the right side of (37) as ε to the right side (38)
and check that it indeed equals αk. �

The following result shows that at the one-parameter level the Rough Bayesian
model can be potentially more data sensitive than the simplified VPRS model.
Obviously, similar comparison of more general cases is a desired direction for
further research.

Theorem 3. Let A = (U, A ∪ {d}) and B ⊆ A be given. Consider vector α =
(α0, . . . , αr−1) satisfying (32) and (36). Consider ε ∈ [0, 1) given by (37) as the
unified parameter for the RB model, that is εl

k = ε for every k, l = 0, . . . , r − 1.
Then we have the following inclusions, for every k = 0, . . . , r − 1:

POS α
B(Xk) ⊆ BAYPOS ε

B(Xk)
NEG α

B(Xk) ⊆ BAYNEG ε
B(Xk)

BND α
B(Xk) ⊇ BAYBND ε

B(Xk)
(39)

Proof. Using the same technique as in the proof of Proposition 4, we can show

Pr(Xk|E) ≤ αk ⇔ εPr(E|¬Xk) ≥ Pr(E|Xk)

where ¬Xk =
⋃

l �=k Xl. Further, using a simple translation, we can observe that

Pr(E|¬Xk) =

∑
l �=k Pr(Xl)Pr(E|Xl)

∑
l �=k Pr(Xl)

Now, we are ready to show inclusions (39). Let us begin with the second one.
Assume that a given E ∈ U/B is not in BAYNEGε

B(Xk), that is

∀l:l �=k εPr(E|Xl) < Pr(E|Xk)

Then we get ε
∑

l:l �=k Pr(Xl)Pr(E|Xl) <
∑

l:l �=k Pr(Xl)Pr(E|Xk), further equi-
valent to

Pr(E|Xk) > ε ·
∑

l:l �=k Pr(Xl)Pr(E|Xl)
∑

l:l �=k Pr(Xl)
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Hence, E is outside NEG α
B(Xk) and the required inclusion is proved. To show

the first inclusion in (39), assume E ⊆ POS α
B(Xk). According to (34), we then

have E ⊆ NEG α
B(Xl), for every Xl, l �= k. Using just proved inclusion, we get

E ⊆ BAYNEG α
B(Xl). By Corollary 1 we then obtain E ⊆ BAYPOS α

B(Xk),
what we wanted to prove. The third inclusion in (39) is now derivable directly
from the other two ones. �

Example 10. Let us recall the decision system from Fig. 3, where Pr(X0) =
Pr(X2) = 1/4 and Pr(X1) = 1/2. It turns out that the parameters α =
(1/10, 1/4, 1/10) considered in Example 8 are derivable using (38) for ε = 1/3.
According to Theorem 3, the RB-regions presented in Example 7 for ε = 1/3 are
referrable to the simplified VPRS-regions from Example 9. It is an illustration for
(39) – one can see that we should expect strict inclusions in all those inclusions.
The specific problem with putting E3 to the positive simplified VPRS-region
of X1 is that it is blocked by too high value of Pr(X2|E3) although this value
seems to be much lower than Pr(X1|E3). We should avoid comparing these two
posterior probabilities directly because it would be unfair with respect to X2 for
its prior probability is twice lower than in case of X1. However, direct compar-
ison of the inverse probabilities Pr(E3|X1) and Pr(E3|X2) shows that we can
follow X1 since E3 is three times more likely given X1 than given X2. �

An interesting feature of the Rough Bayesian model is that it can use a single
parameter ε ∈ [0, 1) to produces valuable results, as illustrated by the above
example. On the other hand, asymmetric extensions of RB are possible, even
for r(r−1) different parameters εl

k corresponding to comparison of εl
kPr(E|Xk)

and Pr(E|Xl). Further research is needed to understand expressive power of
such extensions and their relevance to the other rough set approaches.

5 Distributed Decision Systems

In the examples considered so far, we referred to decision systems gathering
objects supporting all decision classes together. On the other hand, while deal-
ing with the Bayes factors and the RB-regions, we calculate only the inverse
probabilities, which do not require putting the whole data in a single table.
We propose a data storage framework, where the objects supporting the target
concepts corresponding to different decision classes are stored in separate data
sets. It emphasizes that in some situations data supporting particular events are
uncombinable and the only probability estimates we can use are of the inverse
character, that is they are naturally conditioned by particular decisions.

Definition 4. Let the set of r mutually exclusive target events be given. By a
distributed decision system A we mean the collection of r information systems

A = {A0 = (X0, A), . . . , Ar−1 = (Xr−1, A)} (40)

where Xk denotes the set of objects supporting the k-th event, k = 0, . . . , r − 1,
and A is the set of attributes describing all the objects in X0, . . . , Xr−1.
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Any information derivable from Ak is naturally conditioned by Xk, for k =
0, . . . , r − 1. Given B-information vector w ∈ VB , B ⊆ A, we can set up

Prk(B = w) =
|{u ∈ Xk : B(u) = w}|

|Xk| (41)

as the probability that a given object will have the values described by w on B
conditioned by its membership to Xk.

Example 11. Let us consider A consisting of two information systems illustrated
in Fig. 4. For instance, Pr0(a1 = 2, a3 = 2) = 1/10 and Pr1(a1 = 2, a3 = 2) =
3/5 are estimates of probabilities that a given object will satisfy a1 = 2 and
a3 = 2, if it supports the events X0 and X1, respectively.

One can see that if we use estimation

Pr(B = w|d = k) = Prk(B = w) (42)

then the inverse probabilities derivable from Fig. 4 are identical with those deriv-
able from Fig. 1. Actually, we created Fig. 1 artificially by doubling the objects
from A1 and merging them with A0 from Fig. 4. Therefore, if we assume that
due to our knowledge we should put Pr(X0) = Pr(X1) = 1/2, then systems
illustrated by Figures 1 and 4 will provide the same posterior probabilities. �

X0 a1 a2 a3 a4 a5

u1 1 2 0 0 2
u2 1 1 0 1 2
u3 0 0 0 2 2
u4 2 1 1 0 2
u5 2 1 1 0 2
u6 2 2 2 1 1
u7 0 1 2 2 2
u8 1 1 0 1 2
u9 2 1 1 0 2
u10 0 0 0 2 2

X1 a1 a2 a3 a4 a5

o1 2 2 2 1 1
o2 0 1 2 2 2
o3 1 1 0 1 2
o4 2 2 2 1 1
o5 2 2 2 1 1

Fig. 4. Distribute decision system A =
{A0 = (X0, A), A1 = (X1, A)}, where A =
{a1, . . . , a5}, and X0 = {u1, . . . , u10}, X1 =
{o1, . . . , o5}.

Distributed decision systems do not provide a means for calculation of the pos-
terior probabilities unless we know the priors of all decision classes. On the other
hand, we get full flexibility with respect to the changes of the prior probabil-
ities, which can be easily combined with the estimates (42). For instance, let
us go back to the case study from the end of Subsection 2.2 and assume that
the objects in A1 = (X1, A) are very carefully chosen cases of a rare medical
pathology while the elements of X0 describe a representative sample of human
beings not suffering from this pathology. Let us put Pr(X1) = 1/1000. Then, as
in Example 6, we get Pr(d = 1|a1 = 2, a3 = 2) = 2/335. It shows how different
posterior probabilities can be obtained from the same distributed decision sys-
tem for various prior probability settings. Obviously, we could obtain identical
results from appropriately created classical decision systems (like in case of the
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system in Fig. 1). However, such a way of data translation is unnecessary or even
impossible, if the prior probabilities are not specified.

From technical point of view, it does not matter whether we keep the data
in the form of distributed or merged decision system, unless we use estimations
(4). However, we find Definition 4 as a clearer way to emphasize the nature of
the data based probabilities that we can really believe in. Indeed, the inverse
probabilities (42) are very often the only ones, which can be reasonably estimated
from real-life data sets. This is because the process of the data acquisition is
often performed in parallel for various decisions and, moreover, the experts can
(and wish to) handle the issue of the information representativeness only at the
level of separate decision classes. Following this argumentation, let us reconsider
the original RS-regions for distributed data, without the need of merging them
within one decision system.

Definition 5. Let the system A = {A0 = (X0, A), . . . , Ar−1 = (Xr−1, A)} be
given. For any Xk and B ⊆ A, we define the B-positive, B-negative, and B-
boundary distributed rough set regions (abbreviated as DRS-regions) as follows:

DPOSB(Xk) = {w ∈ VB : ∀l: l �=kPrl(B = w) = 0}
DNEGB(Xk) = {w ∈ VB : Prk(B = w) = 0}
DBNDB(Xk) = {w ∈ VB : Prk(B = w) > 0 ∧ ∃l: l �=kPrl(B = w) > 0}

(43)

The difference between (43) and (9) is that the distributed rough set regions are
expressed in terms of B-information vectors, regarded as the conditions satisfi-
able by the objects. Besides, both definitions work similarly if they refer to the
same inverse probabilities.

Example 12. The DRS-regions obtained for B = {a1, a3} from Fig. 4 look as
follows:

DPOSB(X1) = ∅
DNEGB(X1) = {{(a1, 0), (a3, 0)}, {(a1, 2), (a3, 1)}}
DBNDB(X1) = {{(a1, 0), (a3, 2)}, {(a1, 1), (a3, 0)}, {(a1, 2), (a3, 2)}}

(44)

One can see that the supports of the above B-information vectors within the
decision system from Fig. 1 correspond to the RS-regions in Example 4. �
The rough set extensions referring in a non-trivial way to the posterior and
prior probabilities, like e.g. VPRS, cannot be rewritten in terms of distributed
decision systems. However, it is possible for the Rough Bayesian model. Actually,
it emphasizes that RB does not need to assume anything about the prior and
posterior probabilities. We believe that in this form our idea of combining rough
sets with the Bayes factor based approaches is possibly closest to the practical
applications.

Definition 6. Let A = {A0 = (X0, A), . . . , Ar−1 = (Xr−1, A)} be given. Con-
sider matrix ε given by (28) for εl

k ∈ [0, 1), k �= l. For any k = 0, . . . , r − 1
and B ⊆ A, we define the B-positive, B-negative, and B-boundary distributed
rough Bayesian regions (abbreviated as DRB-regions) as follows:
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DBAYPOS ε
B(Xk) =

{
w ∈ VB : ∀l: l �=kPrl(B = w) ≤ εl

kPrk(B = w)
}

DBAYNEG ε
B(Xk) =

{
w ∈ VB : ∃l: l �=kPrk(B = w) ≤ εk

l Prl(B = w)
}

DBAYBND ε
B(Xk) =

{
w ∈ VB : ∃l: l �=kPrl(B = w) > εl

kPrk(B = w)
∧ ∀l: l �=kPrk(B = w) > εk

l Prl(B = w)
}

(45)

Example 13. Fig. 5 illustrates a distributed system for three target events. They
result from splitting A0 = (X0, A) from Fig. 4 onto equally large A0 = (X0, A)
and A2 = (X2, A), similarly as we did in the previous sections with our exemplary
non-distributed decision system. Let us start with calculation of the regions
introduced in Definition 5. As usual, consider B = {a1, a3}. The DRS-regions
for X1 do not change with respect to (44). The remaining regions look as follows:

DPOSB(X0) = ∅ DPOSB(X2) = ∅
DNEGB(X0) = {{(a1, 0), (a3, 2)}, {(a1, 2), (a3, 2)}} DNEGB(X2) = ∅
DBNDB(X0) = VB \ DNEGB(X0) DBNDB(X2) = VB

(46)

X0 a1 a2 a3 a4 a5

u1 1 2 0 0 2
u2 1 1 0 1 2
u3 0 0 0 2 2
u4 2 1 1 0 2
u5 2 1 1 0 2

X2 a1 a2 a3 a4 a5

e1 2 2 2 1 1
e2 0 1 2 2 2
e3 1 1 0 1 2
e4 2 1 1 0 2
e5 0 0 0 2 2

X1 a1 a2 a3 a4 a5

o1 2 2 2 1 1
o2 0 1 2 2 2
o3 1 1 0 1 2
o4 2 2 2 1 1
o5 2 2 2 1 1

Fig. 5. System A = {A0 = (X0, A), A1

= (X1, A), A2 = (X2, A)}, where A =
{a1, . . . , a5}, X0 = {u1, . . . , u5}, X1 =
{o1, . . . , o5}, X2 = {e1, . . . , e5}.

The B-boundary DRS-region for X2 corresponds to the whole VB . It means
that any so far recorded B-information vector is likely to occur for a given
object under the assumption that that object supports X2, as well as under the
assumption that it supports X0 and/or X1. Now, consider the DRB-regions for
ε = 1/3. We obtain the following changes with respect to the (44) and (46):

1. DBAYPOS1/3
B (X1), DBAYNEG1/3

B (X2) start to contain {(a1, 2), (a3, 2)}.
2. DBAYBND1/3

B (Xk), k = 1, 2, do not contain {(a1, 2), (a3, 2)} any more.

The obtained DRB-regions are comparable with the RB-regions obtained previ-
ously for the corresponding non-distributed decision system from Fig. 3. �
Introduction of distributed decision systems has rather a technical than theoret-
ical impact. It illustrates possibility of handling decomposed data, which can be
especially helpful in case of many decision classes with diversified or unknown
prior probabilities. Distributed systems provide the exact type of information
needed for extracting the RB-regions from data. Hence, we plan implementing
the algorithms referring to the Rough Bayesian model mainly for such systems.
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6 Final Remarks

We introduced the Rough Bayesian model – a parameterized extension of rough
sets, based on the Bayes factor and the inverse probabilities. We compared it
with other probabilistic extensions, particularly with the VPRS model relying on
the data based posterior probabilities. We considered both the two-decision and
multiple-decision cases, where the direct comparison of the inverse probabilities
conditioned by decision classes turns out to be more flexible than handling their
posterior probabilities. Finally, we proposed distributed decision systems as a
new way of storing data, providing estimations for the Rough Bayesian regions.

We believe that the framework based on the Rough Bayesian model is well
applicable to the practical data analysis problems, especially if we cannot rely on
the prior/posterior probabilities derivable from data and/or background knowl-
edge. The presented results are also helpful in establishing theoretical founda-
tions for correspondence between the theory of rough sets and Bayesian reason-
ing. Several basic facts, like, e.g., the inverse probability based characteristics of
the original rough set model, support an intuition behind this correspondence.
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