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Abstract. Many famous blind source separation (BSS) in frequency
domain have been developed while they can still not avoid the permuta-
tion problem. We propose a new BSS approach for far-field broadband
acoustic signals via combining the frequency invariant bemforming (FIB)
technique and complex-valued independent component analysis (ICA).
Compared with other frequency methods, our method can avoid the per-
mutation problem and has much faster convergency rate. We also present
a new performance measure to evaluate the separation. Finally, the sim-
ulation is given to verify the efficiency of the proposed method.

1 Introduction

Blind source separation (BSS) is a method for recovering independent source
signals from their mixtures without any prior knowledge of signals and mixing
process besides some statistical features [1]. Since the pioneering work by Jutten
and Herault [2], BSS has drawn lots of attention in signal processing community
and neural networks community [1], [3] ,[4] ,[5] ,[6].

Early BSS studies dealt with an instantaneously mixing process [5] ,[6], while
recent reports are mainly concerned with convolutive mixtures [4] ,[7] ,[8] ,[9]
which is much more difficult from theoretical and computational points of view.
Roughly speaking, BSS methods for convolutive mixtures can be classified into
the two types: the time domain approach and frequency domain one.

In time domain, BSS problem can be solved by applying independent com-
ponent analysis (ICA) directly to the convolutive mixtures model [7]. This type
of BSS methods can avoid the permutation indeterminacy which can hardly be
avoided in frequency domain and can achieve good separation once the used al-
gorithm converges. Its disadvantage is that ICA for convolutive mixtures is not
as simple as ICA for instantaneous mixtures and computationally expensive for
long FIR filters because it includes convolution operations [4].

In frequency domain, the convolutive mixtures problem of time domain is
converted into instantaneous mixtures problem at each frequency. Hence, the
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complex-valued ICA can be applied at each frequency bin [4]. The merit of these
approaches is that the ICA algorithm becomes simple and can be performed
separately at each frequency [4]. However, the indeterminacy of permutation and
gain of the ICA solution becomes a serious problem. Luckily, many permutation
correction approaches have been proposed [8] ,[9]. Recently, Sawada et. al. have
proposed a robust and precise method for solving the permutation problem [4].
But it is a pity that their approach computationally expensive for permutation
correction.

In this paper, we propose a frequency domain approach for blind separation
of mixtures of acoustic signals in far field. Our approach consists of two steps: 1)
filter using the frequency invariant beamforming (FIB); 2) separation using the
complex-valued ICA algorithm in frequency domain. The merit of our approach
is that it avoid the permutation problem and has good separated results. We
also proposed a new performance measure to evaluate the quality of separation.

The rest of this paper is organized as follows. In section 2 we propose our
separation method. After that, a new performance measure is discussed in section
3. The simulation result is given in section 4. Finally, this paper is concluded in
Section 5.

2 New BSS Method for Acoustic Signals

In this section, we present our new BSS architecture which has two parts: FIB
design and separation matrix design.

We first assume that there are q sensors in a linear array and p unknown
sources in far field emitting acoustic signals from direction Θ = [θ1, · · · , θp],
where θi is the direction to the ith source measured relative to the array axis.
And we also assume p < q. The discrete time signal received at jth sensor is
given by

xj [k] =
p∑

i=1

si[k − τj(θi)] + vj [k] (1)

where vj [k] is the addition white noise, si[k] is the ith source signal, and τj(θi) =
dj sin θi/c is the propagation delay of ith source to the jth sensor, dj is the
position of the jth sensor, c is the propagation velocity of the signals. Define the
q-dimensional vector of stacked array data as

x[k] = [x1[k], · · · , xq[k]] (2)

with a frequency response given by

X(f) = A(Θ, f)S(f) + V(f) (3)

where S(f) = [s1(f), · · · , sp(f)] is the source signal vector in frequency, V(f) =
[v1(f), · · · , vq(f)] is the additive noise vector, and A(Θ, f) is the q × p source
direction matrix with its element aij = e−j2πfτi(θj). The BSS problem is to
recover s[k] = [s1[k], · · · , sp[k]] using only x[k]. Equation (3) indicates that the
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mixing process at each frequency is instantaneous. Then, the complex-valued
ICA approach can be applied at each frequency to solve the BSS problem [4]

Y(f) = W(f)X(f) (4)

where Y(f) = [y1(f), · · · , yp(f)] is the separated result in frequency domain,
W(f) is a p × q separation matrix. The learning rule of the separation matrix
is given by [4]

∆W = µ
[
I− 〈

Φ(Y)YH
〉

t

]
W (5)

where µ is a step-size parameter, 〈·〉t denotes the averaging operator overtime,
and Φ(·) is some nonlinear function.

For the mixing matrix is different at different frequency, the ICA approach
can not avoid the permutation problem (see [4]). If the the mixing matrix is
essentially identical for all frequencies, we can serially update the separation
matrix from one frequency to another. And the permutation problem need not
be considered. Luckily, we have the FIB technique to realize that. The main
idea of FIB is to design a filter b(f) such that the response of this beamformer
may be made approximately constant with respect to frequency over the design
bandwidth fL ∼ fU , i.e.,

r(θ, f) = bH(f)a(θ, f) ≈ rFI(θ), ∀θ, ∀f ∈ [fL, fU ] (6)

where a(θ, f) = [e−j2πfτ1(θ), · · · , e−j2πfτq(θ)]T , and r(θ, f) is the response of
beamformer. Several methods of designing a FIB have been proposed [10] ,[11]

After we apply an FIB to the received array data, the beamformer output in
frequency is

Z(f) = BH(f)X(f) (7)

where Z(f) is referred as the frequency invariant beamspace (FIBS) data ob-
servation vector, B(f) = [b1(f), · · · ,bp(f)] is q × p filter response matrix, and
bi(f) is the ith set of beam shaping filter response vector. By using (3), the
FIBS data vector can be rewritten as

Z(f) = BH(f)X(f)
= BH(f)A(Θ, f)S(f) + BH(f)V(f)
= AB(Θ, f)S(f) + VB(f) (8)

where AB(Θ, f) = BH(f)A(Θ, f) is the p × p FIBS source direction matrix,
and VB(f) = BH(f)V(f) is the p × 1 FIBS noise vector.

Because the beamformers are designed to satisfy the frequency invariant
property (6), the FIBS source direction matrix is approximately constant for
all frequencies within the designed band, i.e., AB(θ, f) ≈ AB(θ), ∀f ∈ [fL, fU ].
Hence, the mixing process of acoustic signals is completely characterized by a sin-
gle beamspace source direction matrix AB(θ) which is independent of frequency
and only decided by the direction-of-arrival (DOA) of the source signals.

After FIB preprocessing, we separate source signals from FIBS data obser-
vation vector Z(f) which can be rewritten as the following mixing model:

Z(f) ≈ AB(θ)S(f) + VB(f) (9)
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Then, we use method (5) to update the separation matrix W serially from
frequency fL to fU .

Our proposed method, compared with general frequency domain BSS meth-
ods [4] ,[8] ,[9], can avoid the indeterminacy of permutation and scaling because
the mixing process with FIB applied is invariant through a broad frequency
band. On the other hand, our approach has much faster convergence rate since
it uses the information of all the frequency data to update the separation matrix
serially.

3 Performance Measure

In this section, we discuss how to measure the quality of separation. We first
define

ki(f) � argmax
k

|Cik(f)| (10)

mi(f) � argmax
m

|Cmi(f)| (11)

where C(f) = W(f)AB(θ, f). Then we define ki and mi as the most frequently
occurring numbers of group ki(f) and mi(f) respectively. A new performance
measure (Pm) of separation is given by

Pm =

∑fs

f=1

∑p
i=1

(
|Ciki(f)|2 |ski(f)|2 + |Cmii(f)|2 |si(f)|2

)

∑fs
f=1

∑p
i=1

(∑p
j=1,j �=ki

|Cij(f)|2 |sj(f)|2 +
∑p

j=1,j �=mi
|Cji(f)|2 |si(f)|2

)

(12)
where fs is the sampling frequency. The proposed performance measure of sepa-
ration, in a sense, describes the average ratio of the total separated signal power
to the total interference power.

4 Simulation Result

To demonstrate the efficiency of the proposed approach, we consider two speech
signals (see Fig. 1) of 30s with the sampling frequency fs = 48k Hz emitting
from −5◦ and 20◦ respectively. The source signals can be downloaded from the
internet address http://medi.uni-oldenburg.de/demo/demo separation.html.

The frame size of short time Fourier transform (STFT) is 1600, and the STFT
overlap is 1200. Two FIB’s were designed according to [11] to be frequency
invariant over the frequency band [300, 3400] Hz. The aperture size is 5 half-
wavelengths. Then, 17 sensors are needed at least and the array is approximately
2.8m long. We compared our method with the one in [4]. The step size in equation
(5) is 0.0005 for our approach while it is 0.01 for the method in [4]. The nonlinear
function is selected as Φ(·) = ej·arg(·). The separation performance defined by
equation (12) is plotted in Fig. 2.
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Fig. 1. Two source signals.
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Fig. 2. The performance measure of separation.

5 Conclusion

We have proposed a new BSS approach by combining the FIB technique and
complex-valued ICA for far-field broadband acoustic signals. The application of
FIB makes our approach avoid the permutation problem, and the updating of
separation matrix can be realized in the frequency serially which brings much
faster convergence rate than other frequency-domain methods. We also proposed
a new performance measure for the ability of separation. At last, the simulation
result is given to verify the efficiency of the proposed approach.
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