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Abstract. We point out that for two sets of measurements, it can hap-
pen that the average of one set is larger than the average of the other
set on one scale, but becomes smaller after a non-linear monotone trans-
formation of the individual measurements. We show that the inclusion
of error bars is no safeguard against this phenomenon. We give a the-
orem, however, that limits the amount of “reversal” that can occur; as
a by-product we get two non-standard one-sided tail estimates for ar-
bitrary random variables which may be of independent interest. Our
findings suggest that in the not infrequent situation where more than
one cost measure makes sense, there is no alternative other than to ex-
plicitly compare averages for each of them, much unlike what is common
practice.

1 Introduction

Fig. 1 shows us a typical performance statistic as we find it in many papers.
For the sake of concreteness, let us assume that the two graphs pertain to two

different numerical algorithms and that it was measured how large the numbers
get in the internal computations. More precisely, the number of bits needed
to represent the largest integer were measured, and each point in the graph is
actually an average taken over a number of problem instances. The fewer bits,
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Fig. 1. The light gray algorithm is clearly better than the dark gray one
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the better of course. Along the x-axis the input size is varied. The message
conveyed by the figure is clear: the “light gray” algorithm performs consistently,
that is for all considered problem sizes, about 10% better than the “dark gray”
algorithm.

Now the cost measure is somewhat arbitrary in the sense that we might as
well have chosen to record the largest integer used and not the number of bits
used to represent it, that is, to consider costs 2c instead of costs c. What graph
do we expect then? Well, if on some instance the one algorithm needs 3 bits and
the other 4 bits, the modified costs would be 23 = 8 versus 24 = 16, that is, not
surprisingly the gap between the two becomes larger. Now let us take a look at
the graph for the same data but with the modified cost measure.
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Fig. 2. . . . or isn’t it?

Indeed, the gap has increased (from 10% to about 30%), but moreover, the
order of the two graphs has changed! How is that possible?

There is, of course, nothing wrong with the figures, which are from authentic
data; details are given in Appendix A. The reason for the reversal is that for
two random variables X and Y , EX ≤ EY does not, in general, imply that
for an (even strictly) increasing function f , Ef(X) ≤ Ef(Y ). For a simple
counterexample, consider two runs of our two algorithms above, where the first
algorithm required once 1 and once 5 bits, and the second algorithm required
4 bits twice. Then clearly, on average the first algorithm required one bit less.
Considering the second cost measure, the first algorithm on average required
numbers up to (21 + 25)/2 = 17, which is one more than the (24 + 24)/2 = 16
required by the second algorithm.

Alternative cost measures are actually quite frequent: to assess the quality
of a language model, for example, both cross-entropy (c) and perplexity (2c)
are equally meaningful and both used frequently [1]. Example publications with
comparison graphs (or tables) of the very same kind as in Fig. 1 and 2 are [2] [3]
[4] [1]. To give a concrete numerical example also, one of these papers in one of
their graphs states average perplexities of ≈ 3200 and ≈ 2900 for two competing
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methods. This appears to indicate a solid 10%-improvement of the one method
over the other, but first, note that the difference of the logarithms is a mere
1%, and second, these perplexities would also result if, for example, the cross-
entropies were normally distributed with a mean and standard deviation of 11.4
and 0.6, respectively, for the apparently superior method, and 11.3 and 1.0 for
the apparently inferior method; see Appendix A for the calculations concerning
the normal distribution.

But language modeling is just one prominent example. Another frequent sce-
nario is that one (basic) algorithm is used as a subroutine in another (more
complex) algorithm in such a way that the complexity of the latter depends on
the complexity of the former via a non-linear, for example quadratic, function
f . Then, of course, an average complexity of c of the basic algorithm does not
simply translate to an average complexity of f(c) of the more complex one. But
isn’t it very tempting to assume that a subroutine with an improved average
complexity will at least improve the program that uses it? Well, but that is just
not necessarily true.

Now it is (or at least should be) common practice when plotting averages
to also provide so-called error bars, indicating some average deviation from the
average. The following theorem, which is the main result of this paper, says that
the “bands” formed by such error bars at least cannot be reversed completely,
that is, without intersection, by any monotone transformation f . As is also
stated in the theorem, however, the obvious strengthenings of this statement do
not hold: for example, it can very well happen that the bands do not intersect in
one measure, yet the means reverse in another measure. The theorem is stated in
terms of expected absolute deviations δX = E|X − EX| and δY = E|Y − EY |,
which are never more than the standard deviation; see Fact 1 further down.

Theorem 1. For any two random variables X and Y , and for any function f
that is strictly increasing, we have

EX + δX ≤ EY − δY =⇒ Ef(X) − δf(X) ≤ Ef(Y ) + δf(Y ) .

This result cannot be strengthened in the sense that if we drop any one of δX,
δY , δf(X), or δf(Y ) to obtain weaker conditions, we can find a counter-example
to the statement.

The proof for Theorem 1, which we give in the following Sect. 2, is elementary
but not obvious. Indeed, on their way the authors switched several times between
striving for a proof, and being close to finding a counterexample. In Sect. 3, we
give an alternative, more elegant proof in terms of the median. The first proof
is more direct, however, while the second proof owes its elegance and brevity to
the insight gained from the first; this is why we give the two proofs in that order.

To establish Theorem 1, we will derive two non-standard one-sided tail esti-
mates for general random variables, namely for a > 0,

Pr(X ≥ EX + a) ≤ δX/(2a);
Pr(X ≤ EX − a) ≤ δX/(2a) .
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These bounds, which are reminiscent of but incomparable to the one-sided
version of the Chebyshev inequality (cf. Appendix B), seem to be little known
and may be of independent interest.

2 Proof of the Main Theorem

All the proofs we give in this paper are for continuous random variables. In all
cases it will be obvious how to modify the proofs to work for the discrete case
by replacing integrals by sums. For a random variable X, we write EX for its
expected value (mean), σX for its standard deviation, that is

√
E (|X − EX|2),

and δX for the mean absolute deviation E|X−EX|. We will throughout assume
that these entities exist. The following simple fact relates the two deviation
measures.

Fact 1. For every random variable X, it holds that δX ≤ σX.

Proof. By Jensen’s inequality, (δX)2 = (E|X − EX|)2 ≤ E
(|X − EX|2) =

(σX)2.

Generally, this inequality will be strict. To get a feeling for the difference,
check that for a normal distribution N(µ, σ) we have δ =

√
2/π σ ≈ 0.8σ and

for an exponential distribution Exp(λ) we have δ = 2/e σ = 2/(e λ) ≈ 0.7σ.
As a consequence of Fact 1 all our results still hold if we replace δ by σ, that

is, we will be proving the stronger form of all results.
We first prove the following non-standard tail estimates, which might be of

independent interest. There is a one-sided version of Chebyshev’s inequality [5]
which looks similar to Lemma 1 below, but the two are incomparable: Lemma
1 is stronger for deviations up to at least σX, while the Chebyshev tail bounds
are stronger for large deviations; see Appendix B.

Lemma 1. For any random variable X and for every a > 0, it holds that

(a) Pr(X ≥ EX + a) ≤ δX/(2a) ;
(b) Pr(X ≤ EX − a) ≤ δX/(2a) .

Proof. Since δX is invariant under shifting X by a constant, we may assume
without loss of generality that EX = 0.

Then, with ϕ denoting the density function pertaining to X,

0 = EX =
∫ 0

−∞
t · ϕ(t) dt +

∫ ∞

0

t · ϕ(t) dt

δX =
∫ 0

−∞
(−t) · ϕ(t) dt +

∫ ∞

0

t · ϕ(t) dt .

Adding the two equations gives us

δX = 2 ·
∫ ∞

0

t · ϕ(t) dt
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≥ 2 ·
∫ ∞

a

t · ϕ(t) dt

≥ 2a ·
∫ ∞

a

ϕ(t) dt

= 2a · Pr(X ≥ a) ,

and hence Pr(X ≥ a) ≤ δX/(2a), which establishes (a). The proof for (b) is
analogous.

Armed with Lemma 1 we can now establish a relation between f(EX) and
Ef(X) for a monotone function f .

Lemma 2. For any random variable X, and for any function f that is strictly
increasing, it holds that

(a) Ef(X) − δf(X) ≤ f(EX + δX) ;
(b) Ef(X) + δf(X) ≥ f(EX − δX) .

Proof. Let a = Ef(X)− f(EX + δX). If a ≤ 0, there is nothing to show for (a),
otherwise two applications of the previous Lemma 1 give us

1/2 ≤ Pr(X ≤ EX + δX)
= Pr(f(X) ≤ f(EX + δX))
= Pr(f(X) ≤ Ef(X) − a)
≤ δf(X)/(2a) ,

and hence Ef(X) − f(EX + δX) = a ≤ δf(X), which is exactly part (a) of the
lemma. The proof of part (b) is analogous. More generally, we could in fact get
that for any t,

f(t) − δf(X)
2Pr(X ≥ t)

≤ Ef(X) ≤ f(t) +
δf(X)

2Pr(X ≤ t)
.

Theorem 1 is now only two application of Lemma 2 away. Let EX + δX ≤
EY − δY , like in the theorem, that is, the “bands” formed by the error bars do
not intersect. Then

Ef(X) − δf(X) ≤ f(EX + δX)
≤ f(EY − δY )
≤ Ef(Y ) + δf(Y ) ,

where the first inequality is by part (a) of Lemma 2, the second inequality follows
from the monotonicity of f , and the third inequality is by part (b) of Lemma 2.
This finishes the proof of our main theorem.
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3 The Median

There is an elegant alternative proof of Lemma 2 in terms of the median.

Fact 2. For any random variable X and any strictly monotone function f we
have mf(X) = f(mX). In the discrete case the medians can be chosen to have
this property.

Proof. Simply observe that for any a we have Pr(X ≤ a) = Pr(f(X) ≤ f(a)).
Here we do require the strict monotonicity.

Fact 3. For any random variable X, the median mX deviates from the mean
EX by at most δX, i.e. mX ∈ [EX − δX,EX + δX].

Remark. This also establishes the (weaker) fact that for any random variable
X, the median mX always lies in the interval [EX − σX,EX + σX], which is
mentioned in the literature [6], but, according to a small survey of ours, seems
to be little known among theoretical computer scientists. When the distribution
of X is unimodal, the difference between the mean and the median can even be
bounded by

√
3/5 · σ [7]. By what is shown below, we may in that case replace

δ by
√

3/5 · σ in Theorem 1.

Proof. Fact 3 is an immediate consequence of Lemma 1 by noting that (for
continuous random variables) Pr(X ≤ mX) = Pr(X ≥ mX) = 1/2 and taking
a = δX. Alternatively, we could mimic the proof of that lemma.

These two simple facts are the heart and soul underlying Theorem 1 in the
sense that the two inequalities of Lemma 2 now have the following very short
and elegant alternative proofs:

Ef(X) − δf(X) ≤ mf(X) = f(mX) ≤ f(EX + δX)
Ef(X) + δf(X) ≥ mf(X) = f(mX) ≥ f(EX − δX)

where the inequalities follow from Fact 3 and the monotonicity of f , and the
equalities are just restatements of Fact 2.

Given Theorem 1 and Fact 2, the question arises whether not the median
should generally be preferred over the mean when looking for an “average” value?

One strong argument that speaks against the median is the following. By the
(weak) law of large numbers, the average over a large number of independent
trials will be close to the mean, not to the median. In fact, by exactly the kind of
considerations given in our introduction, the order of the medians could be the
opposite of the order of the averages, which would be deceptive when in practice
there were indeed a large number of independent runs of the algorithm.

A pragmatic argument is that the mean can be computed much easier: the
values to be averaged over can simply be summed up without a need to keep
them in memory. For the median, it is known that such a memoryless compu-
tation does not exist [8]; even approximations have to use a non-constant num-
ber of intermediate variables, and the respective algorithms are far from being
simple [9].
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4 Relaxations of the Main Theorem

In this section, we show that the result from the previous section cannot be
relaxed in any obvious way, as stated in Theorem 1.

We try to find examples which are realistic in the sense that the f is well-
behaved and the distributions are simple. We do so to emphasize that all con-
ditions are also of practical relevance. First, observe that if the function f is
strictly increasing it also has a strictly increasing inverse function f−1. This
allows us to halve the number of cases we have to consider from four to two:
any counter-example for the case where δX is dropped from the statement of
Theorem 1, gives a counter-example for the case where δf(Y ) is dropped, by
replacing f(X) → U and f(Y ) → V , where U and V are also random variables,
and the same symmetry relates δY to δf(X).

To prove that we cannot drop the δX (and hence neither the δf(y)) from the
statement of Theorem 1, we consider an example where Y is constant. Then we
find an example of a distribution for X and a strictly increasing function f such
that

EX < Y and
Ef(X) − δf(X) > f(Y ) .

The obvious thing works: We let X have a two-point distribution with points
x1 < Y and x2 > Y and consider a function which is convex, e.g. f(x) = ex. For
this setting we try to solve the system

p1 x1 + p2 x2 < Y

p1 f(x1) + p2 f(x2) − 2 p1 p2 (f(x2) − f(x1)) < f(Y ) . (1)

It becomes slightly easier to spot solutions to this if we write p1 = 1
2 − δ and

p2 = 1
2 + δ. Then (1) becomes

2 p1 f(x1) (1 + δ) + 2 p2f(x2) δ < f(Y ) . (2)

Thus as long as δ > 0 and f increases ‘fast enough’ in the region between Y
and x2 we can always construct a simple counter-example as f(x2) >> f(Y ).
For example, take Y = 2, p1 = 1

4 , p2 = 3
4 , x1 = −2, x2 = 3. Similarly, we can

find a two point counter-example for the case without the δY by considering a
logarithmic function. One such example consists of a constant X = 1, p1 = 3

4 ,
p2 = 1

4 , y1 = .5, y2 = 3 and f(x) = log(x).
If we restrict ourselves, as we have done, to the case where only one of X

and Y is random we see from Jensen’s inequality that we must indeed consider
examples with the curvatures as chosen above. Otherwise, it would be impossible
to find a counter-example.

The same examples still work if we allow Y to have a small degree of variation.
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5 Conclusions

Theorem 1 ensures that when conclusions are drawn only when the error bands
do not intersect, there will at least never be contradictions from the angle of
different measurement scales. The bad news is that, even when the error bands
do not intersect in one scale, in general nothing can be inferred about the order
of the averages after a monotone transformation.

Obviously, when two sets of measurements are completely separated in the
sense that the largest measurement of one set is smaller than the smallest mea-
surement of the other set, then no monotone transformation can reverse the
order of the averages. Beyond that, however, there does not seem to be any
less restrictive natural precondition, which most datasets would fulfill and under
which average reversal provably cannot occur.

What can be proven is that for two random variables X and Y , if 0 ≤
E(X − EX)k ≤ E(Y − EY )k for all k ∈ N, then for a monotonously increasing
function f , with all derivatives also monotone (as is the case for any monomial
x �→ xk with k ∈ N, and for any exponential x �→ bx with b > 1), indeed E(X) ≤
E(Y ) ⇒ Ef(X) ≤ Ef(Y ). Unfortunately, this precondition is neither practical
to check nor generally fulfilled. For example, consider two random variables
with different exponential distributions, both mirrored around the mean: then
one random variable will have smaller mean and variance than the other, yet its
third central moment (which is negative), will be larger.

The bottom line of our findings is that, in case there is an option, there is no
alternative other than to explicitly provide a comparison in each cost measure
that is of interest. Anyway, it should be clear that even in one fixed cost measure,
an average comparison alone does not say much: it is well known (see [10] for
an easy-to-read account) that even when the error bands do not intersect, the
apparent order of the averages is statistically not significant. Comparing averages
can be a very deceptive thing. Hence our title.
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A The Example from the Introduction

Each point in the figures in the introduction was computed as the average over
points distributed as Z = z0 + Exp(λ), where Exp(λ) denotes the exponential
distribution with mean 1/λ (density is ϕ(t) = λ e−λ t; variance is 1/λ2).

For the mean of 2Z , or more generally, eκZ , we have that

EeκZ =
∫ ∞

0

eκ(z0 + t)λe−λt dt

= eκz0 · λ/(λ − κ)

≈ eκ(z0 + 1/(λ − κ))

= eκ(z0 + 1/λ + κ/(λ(λ − κ))).

For the figures in the introduction, we chose z0 so that the means for each
curve would lie on a slightly perturbed line. For the light gray curve, we chose
λ = 1, for the dark gray curve we chose λ = 2. For example, for X = 3 + Exp(1)
and Y = 5 + Exp(2), we then have

EX = 3 + 1/1 = 4
EY = 5 + 1/2 = 5.5,

and for κ = 3/4 (then eκ ≈ 2),

EeκX ≈ eκ(3 + 1.0 + 3.0) ≈ 27.0

EeκY ≈ eκ(4 + 0.5 + 0.3) ≈ 25.8.

Observe that in this setting we need κ < λ1 and κ < λ2 to ensure that both
EeκX and EeκY exist.

One objection against the exponential distribution might be that its exponen-
tiation is too heavy-tailed in the sense that not all its moments exist. However,
the same calculations as above can also be carried out for two, say, normal dis-
tributions, which are free from this taint. Let Z = N(z0, σ), that is, Z has a

http://www.graphpad.com/articles/errorbars.htm


76 H. Bast and I. Weber

normal distribution with mean z0 and standard deviation σ. A straightforward
calculation shows that the mean of eκZ , which obeys a lognormal distribution,
is given by

EeκZ =
∫ ∞

−∞
eκt 1√

2πσ2
e−(t − z0)2/(2σ2) dt

= eκz0 + κ2σ2/2.

Taking, for example, X = N(4, 1.5) and Y = N(4.5, 1.0) and κ = 1, we then
get the following reversed means after exponentiation:

EeκX = eκ4 + κ21.52/2 = e5.125

EeκY = eκ4.5 + κ2/2 = e5.

B One-Sided Chebyshev Bounds

For the sake of completeness, we state the one-sided version of Chebyshev’s
inequality, which looks similar to Lemma 1 in Sect. 2. As mentioned in that
section, Lemma 1 is stronger for deviations up to at least σX, while the lemma
below is stronger for large deviations.

Lemma 3. For any random variable X and for every a > 0, it holds that

(a) Pr(X ≥ EX + a) ≤ (σX)2

a2+(σX)2 ;

(b) Pr(X ≤ EX − a) ≤ (σX)2

a2+(σX)2 .

Proof. See, for example, [5]. The main idea is to write Pr(X ≥ EX + a) =
Pr((X − EX + c)2 ≥ (a + c)2), then apply Markov’s inequality and determine
that c which gives the best bound; similarly for (b).
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