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Abstract. We consider the problem of covering an orthogonal polygon
with a minimum number of axis-parallel rectangles from a computational
point of view. We propose an integer program which is the first gen-
eral approach to obtain provably optimal solutions to this well-studied
NP-hard problem. It applies to common variants like covering only the
corners or the boundary of the polygon, and also to the weighted case.
In experiments it turns out that the linear programming relaxation is
extremely tight, and rounding a fractional solution is an immediate high
quality heuristic. We obtain excellent experimental results for polygons
originating from VLSI design, fax data sheets, black and white images,
and for random instances. Making use of the dual linear program, we
propose a stronger lower bound on the optimum, namely the cardinality
of a fractional stable set. We outline ideas how to make use of this bound
in primal-dual based algorithms. We give partial results which make us
believe that our proposals have a strong potential to settle the main open
problem in the area: To find a constant factor approximation algorithm
for the rectangle cover problem.

1 Introduction

A polygon with all edges either horizontal or vertical is called orthogonal. Given
an orthogonal polygon P , the rectangle cover problem is to find a minimum
number of possibly overlapping axis-parallel rectangles whose union is exactly P .
In computational geometry, this problem received considerable attention in the
past 25 years, in particular with respect to its complexity and approximability
in a number of variants. Still, the intriguing main open question [5] is:

Is there a constant factor approximation algorithm for the rectangle
cover problem?

We do not answer this question now, but we offer a different and new kind of
reply, which is “computationally, yes”. In fact, we provide a fresh experimental
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view, the first of its kind, on the problem which has applications in the fabrication
of masks in the design of DNA chip arrays [11], in VLSI design, and in data
compression, in particular in image compression.

Previous work. Customarily, one thinks of the polygon P as a union of finitely
many (combinatorial) pixels, sometimes also called a polyomino. The polygon
P can be associated with a visibility graph G [15, 17, 18, 20]: The vertex set of
G is the set of pixels of P and two vertices are adjacent in G if and only if their
associated pixels can be covered by a common rectangle. Rectangles correspond
to cliques in G. That is a set of vertices, any two of which are adjacent. Let θ
denote the number of rectangles in an optimal cover. An obvious lower bound on
θ is the size α of a maximum stable set in G, also called maximum independent
set. This is a set of pixels, no two of which are contained in a common rectangle.
In the literature one also finds the notion of an antirectangle set.

Chvátal originally conjectured that α = θ, and this is true for convex poly-
gons [6] and a number of special cases. Szemerédi gave an example with θ �= α,
see Figure 1. Intimately related to the initially stated open question, Erdős then
asked whether θ/α was bounded by a constant. In [6] an example is mentioned
with θ/α ≥ 21/17 − ε, however, this example cannot be reconstructed from [6],
and thus cannot be verified. The best proven bound is θ/α ≥ 8/7.

For polygons with holes and even for those without holes (also called simple)
the rectangle cover problem is NP-hard [16, 7] and MaxSNP-hard [4], that
is, there is no polynomial time approximation scheme. The best approximation
algorithms known achieve a factor of O(

√
log n) for general polygons [1] and

a factor of 2 for simple polygons [8], where n is the number of edges of the
polygon. Because of the problem’s hardness quite some research efforts have
gone into finding polynomially solvable special cases; we mention only covering
with squares [2, 14] and polygons in general position [5]. Interestingly, there is
a polynomial time algorithm for partitioning a polygon into non-overlapping
rectangles [19]. However, a polygon similar to Fig. 3 shows that an optimal
partition size may exceed an optimal cover size by more than constant factor,
so this does not lead to an approximation.

Our Contributions. Despite its theoretical hardness, we demonstrate the rectan-
gle cover problem to be computationally very tractable, in particular by studying
an integer programming formulation of the problem. Doing this, we are the first
to offer an exact (of course non-polynomial time) algorithm to obtain provably
optimal solutions, and we are the first to introduce linear/integer programming
techniques in this problem area. Based on a fractional solution to the (dual of
the) linear programming relaxation we propose a stronger lower bound on the
optimum cover size which we call the fractional stable set size. In fact, this new
lower bound motivates us to pursue previously unexplored research directions to
find a constant factor approximation algorithm. These are the celebrated primal-
dual scheme [9], rounding a fractional solution, and a dual fitting algorithm [21].
We are optimistic that our research will actually contribute to a positive answer
to the initially stated long standing open question, and due to space limitations
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we only sketch some partial results and promising ideas. A fruitful contribution
of our work is a number of open questions it spawns.

Preliminaries. Since we are dealing with a combinatorial problem, we identify
P with its set of combinatorial pixels. This way we write p ∈ P to state that
pixel p is contained in polygon P . Let R denote the set of all rectangles in P . It
is important that we only count rectangles and do not consider areas. Thus, it
is no loss of generality to restrict attention to inclusionwise maximal rectangles.
We will do so in the following without further reference. The number of these
rectangles can still be quadratic in the number n of edges of P [8], see also Fig. 2.

2 An Integer Program

Interpreting rectangles as cliques in G we can make use of the standard integer
programming formulation for the minimum clique cover problem in graphs [20].
A binary variable xr indicates whether rectangle r ∈ R is chosen in the cover or
not. For every pixel p ∈ P at least one rectangle which covers p has to be picked,
and the number of picked rectangles has to be minimized:

θ = min
∑

r∈R

xr (1)

s. t.
∑

r∈R:r�p

xr ≥ 1 p ∈ P (2)

xr ∈ {0, 1} r ∈ R (3)

This integer program (which we call the primal program) allows us to optimally
solve any given instance of our problem, and we will do so in our experiments.
When we replace (3) by xr ≥ 0, r ∈ R (3′), we obtain the associated linear pro-
gramming (LP) relaxation. There is no need to explicitly require xr ≤ 1, r ∈ R,
since we are minimizing. We call the optimal objective function value of the LP
relaxation the fractional cover size of P and denote it by θ̄. Clearly, it holds that
θ̄ ≤ θ. In general, no polynomial time algorithm is known to compute the frac-
tional clique cover number of a graph, that is, for solving this linear program [20].
In our case, however, the number of variables and constraints is polynomial in
n, in fact quadratic, due to the fact that we work with maximal rectangles only.
Therefore, the fractional cover size θ̄ can be computed in polynomial time.

This integer program immediately generalizes to the weighted rectangle cover
problem, where rectangles need not have unit cost. It is straightforward, and it
does not increase the complexity, to restrict the coverage requirement to partic-
ular features of the polygon like the corners or the boundary—two well-studied
variants [4] for which no exact algorithm was known. It is also no coincidence
that a formal dualization of our program leads to a formulation for the dual
problem of finding a maximum stable set. A binary variable yp, p ∈ P , reflects
whether a pixel is chosen in the stable set or not. We have to require that no
rectangle contains more than one of the chosen pixels, and we maximize the
number of chosen pixels. We call this the dual integer program:
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α = max
∑

p∈P

yp (4)

s. t.
∑

p∈P :p∈r

yp ≤ 1 r ∈ R (5)

yp ∈ {0, 1} p ∈ P (6)

Again, when replacing (6) by yp ≥ 0, p ∈ P (6′), we obtain the associated LP
relaxation. We call its optimal objective function value ᾱ the fractional stable
set size of P . We refer to a feasible solution to the dual as a fractional stable set.
It holds that ᾱ ≥ α. By strong linear programming duality we have ᾱ = θ̄. We
stress again the fact that we distinguish between the (primal and dual) integer
programs which solve the problems exactly, and their respective continuous lin-
ear programming relaxations, which give bounds. In general, optimal solutions
to both linear programs (1)–(3′) and (4)–(6′) are fractional. However, using an
interesting link to graph theory, in the case that G is perfect [10], optimal solu-
tions are automatically integer because of a strong duality between the integer
programs [20]. This link was established already early, see e.g., [3,17,18], and our
linear programs give optimal integer covers in polynomial time for this important
class of polygons with α = θ.

2.1 About Fractional Solutions

Our computational experiments fuel our intuition; therefore we discuss some
observations first. In linear programming based approximation algorithms the
objective function value of a primal or dual fractional solution is used as a lower
bound on the integer optimum. The more we learn about such fractional solutions
the more tools we may have to analyze the problem’s approximability.

General Observations. The linear relaxations (1)–(3′) and (4)–(6′) appear to be
easily solvable to optimality in a few seconds on a standard PC. The vast ma-
jority of variables already assumes an integer value. A mere rounding of the
remaining fractional variables typically gives an optimal or near-optimal integer
solution (e.g., instance night is a bad example with “only” 95% integer val-
ues, but the rounded solution is optimal). For smaller random polygons the LP
optimal solution is very often already integer; and this is an excellent quality
practical heuristic, though memory expensive for very large instances.

Odd Holes. Figure 1 (left) shows Szemerédi’s counterexample to the α = θ
conjecture. The 5 rectangles indicated by the shaded parts have to be in any
cover. In the remaining parts of the polygon, there are 5 pixels which induce an
odd-length cycle C (“odd hole”) in the visibility graph G. To cover these pixels,
at least 3 rectangles are needed, implying θ ≥ 8. On the other hand, at most 2
of these pixels can be independent, that is, α ≤ 7. The odd hole C is precisely
the reason why G is not perfect in this example. Figure 1 (right) shows that
C is encoded in the optimal fractional solution as well: Exactly the variables
corresponding to edges of C assume a value of 0.5. The same figure shows an
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Fig. 1. The original counterexample to α = θ by Szemerédi and (to the right) an

optimal fractional cover. Thicker lines (points) indicate rectangles (pixels) which are

picked to the extent of 0.5

optimal fractional stable set. Pixels corresponding to vertices of C assume a
value of 0.5 (drawn fatter in the figure). That is, ᾱ = θ̄ = 7.5. This immediately
suggests to strengthen the LP relaxation.

Lemma 1. For any induced odd cycle C with |C| ≥ 5, the inequality
∑

r∈C xr ≥
�|C|/2� is valid for (1)–(3), where r ∈ C denotes the rectangles corresponding
to the edges of C.

The graph theoretic complements of odd holes are called odd antiholes. A
graph is not perfect either if it contains an induced odd antihole. However,
we can prove that there is no way of representing even the simplest non-trivial
antihole with 7 vertices in a rectangle visibility graph. Odd holes are therefore the
only reason for imperfection. Unfortunately still, from our experiments, arbitrary
fractions are possible, not only halves, and simply rounding a fractional solution
does not give a constant factor approximation, as discussed next.

High Coverage. We define the coverage of a pixel p as the number of rectangles
which contain p. For the classical set cover problem, rounding up an optimal frac-
tional solution gives an f -approximate cover, where f is the maximum coverage
of any element. In general, a pixel can have more than constant coverage; even
worse, almost no pixel may have constant coverage; even in an optimal cover of
a simple polygon in general position pixels may have high coverage (see Fig. 2).
Unlike in the general set cover case, high coverage is no prediction about the
fractions in an optimal LP solution: In Fig. 2 there are no fractional variables,
the solution is integer. The fractional (indeed integer) optimal solution to this
simple example has a remarkable property. Every rectangle in the optimal cover
contains pixels of low coverage. More precisely, the following holds.

Lemma 2. In an optimal cover C, every rectangle r ∈ C contains a pixel which
is uniquely covered by r.

This can be easily seen since otherwise C \ {r} would be a cover, contradicting
the optimality of C. We call these uniquely covered pixels private. It is no coin-
cidence that the pixels in a maximal stable set are private. It is natural to ask
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Fig. 2. Left: The shaded center pixel is covered by any maximal rectangle; almost all

pixels have non-constant coverage. In an optimal cover, the coverage of the center pixel

is linear in the cover size. The right figure schematically shows a minimal cover and a

maximal stable set

(since an answer immediately turns LP rounding into a constant factor approx-
imation algorithm): What are the characteristics of polygons where every pixel
has only constant coverage? What kind of polygons have “many” pixels with
“low” coverage? How can we exploit Lemma 2? These questions are intimately
related to the next section.

3 LP Based Approximation

There are more elaborate linear programming based approaches to constant
factor approximation algorithms. They can be used as analytical tools to theo-
retically sustain our excellent computational results.

3.1 Primal-Dual Scheme

The primal-dual scheme [9] builds on relaxing the well-known complementary
slackness optimality conditions [20] in linear programming. The general scheme
iteratively improves an initially infeasible integer primal solution, that is, a set
of rectangles, to finally obtain a feasible cover. The improvement step is guided
by a feasible fractional dual solution, that is a fractional stable set, which is
improved in alternation with the primal solution. The relaxed complementary
slackness conditions contain the key information. In our case they read

xr > 0 ⇒ 1
d
≤

∑

p∈P :p∈r

yp r ∈ R (7)

for some constant d, and

yp > 0 ⇒
∑

r∈R:r�p

xr ≤ c p ∈ P (8)
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for some constant c. First note that if a possibly infeasible primal integer solution
is maintained, xr > 0 means xr = 1. An interpretation of condition (7) is that
every rectangle in the constructed cover must cover at least 1/d pixels from the
fractional stable set. Condition (8) states that a pixel in the fractional stable set
must not be contained in more than c rectangles (regardless of whether in the
cover or not).

We found two cases where we can compute a cover and a fractional stable
set simultaneously such that the two conditions hold. Thin polygons, as unions
of width 1 or height 1 rectangles, are a class of polygons amenable to LP round-
ing and the primal-dual scheme: Since no pixel is covered by more than two
rectangles this gives a 2-approximation. More generally, polygons of bounded
width (every pixel contains a boundary pixel in its “neighborhood”) are a new
non-trivial class which allows a constant factor approximation.

3.2 Dual Fitting

Since α ≤ θ the former natural approach to approximation algorithms was to
construct a large stable set usable as a good lower bound [8]. Since α ≤ ᾱ
we propose to use the stronger bound provided by a fractional stable set. Our
dual fitting approach [21] is to simultaneously construct a cover C ⊆ R and an
pseudo stable set S ⊆ P of pixels with |C| ≤ |S| (we say that S pays for C).
“Pseudo” refers to allowing a constant number c of pixels in a rectangle, that is,
we relax (5) to

∑
p∈P :p∈r yp ≤ c. From this constraint we see that picking each

pixel in S to the extent of 1/c (which is a division of all yp variables’ values by
c) gives a feasible fractional solution to our dual linear program. A cover with
these properties has a cost of

|C| ≤ |S| ≤ c · ᾱ = c · θ̄ ≤ c · θ , (9)

that is, it would yield a c-approximation. Actually, one does not have to require
that S pays for the full cover but 1

d |C| ≤ |S| for a constant d suffices, which would
imply a (c · d)-approximation. This paying for a constant fraction of the primal
solution only is a new proposal in the context of dual fitting. Here again, the
question is how to guarantee our conditions in general. From a computational
point of view, we obtain encouraging results which suggest that our proposal can
be developed into a proven constant factor approximation. In the next section
we sketch some ideas how this can be done.

4 Towards a Constant Factor Approximation

4.1 Obligatory Rectangles and Greedy

For set cover, the greedy algorithm yields the best possible approximation fac-
tor of O(log n). The strategy is to iteratively pick a rectangle which covers the
most yet uncovered pixels. One expects that for our particular problem, the
performance guarantee can be improved. Computationally, we answer strictly
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in the affirmative. Again, our contribution is the dual point of view. It is our
aim to design an algorithm which is based on the dual fitting idea of Sec-
tion 3.2, and we mainly have to say how to construct a feasible dual fractional
solution.

We use some terminology from [11]. Certain rectangles have to be in any
cover. A prime rectangle contains a pixel which is not contained in any other
rectangle. Such a pixel is called a leaf. Every cover must contain all prime rect-
angles. For a given pixel p we may extend horizontally and vertically until we
hit the boundary; the rectangular area R(p) defined by the corresponding edges
at the boundary is called the extended rectangle of p. R(p) might not be en-
tirely contained in the polygon but if so, it is a prime rectangle [11]. Moreover,
let C′ ⊆ C be a subset of some optimal cover C. If there is a rectangle r which
contains (P \ C′) ∩ R(p) for some extended rectangle R(p), then there is an op-
timal cover which contains C′ and r [11]. In this context, let us call rectangle r
quasi-prime and pixel p a quasi-leaf. The algorithm we use to compute a cover
is a slight extension of [11], but we will provide a new interpretation, and more
importantly, a dual counterpart:

Quasi-Greedy
1. pick all prime rectangles
2. pick a maximal set of quasi-prime rectangles
3. cover the remaining pixels with the greedy algorithm
4. remove redundant rectangles (“pruning”)

It has not been observed before that a set of leafs and quasi-leafs forms a
stable set. This leads to the idea to compute a pseudo stable set containing a
maximal set of leafs and quasi-leafs. Thus, in order to build a pseudo stable set
we check for every rectangle in the greedy cover whether it contains

1. a leaf
2. a quasi-leaf
3. a corner pixel

The first positive test gives a pixel which we add to the pseudo stable set.
A corner pixel is a corner of a rectangle which is private and a corner of the
polygon. We already observed that pixels from steps 1 and 2 are independent.
Furthermore, any rectangle obviously contains at most 4 corner pixels, and since
corner pixels are private, actually at most 2 of them. By our previous consider-
ations, this would imply a 2-approximation if the constructed pseudo stable set
would pay for the whole cover. In general, we found this not to be true. We have
constructed examples which suggest that one cannot guarantee that a constant
fraction of the cover has been paid for. To achieve this latter goal one has to add
more pixels to the pseudo stable set. To this end we extend the above test and
also check for every rectangle in the cover whether it contains

4. a border pixel.

A border pixel p is private and adjacent to a non-polygon pixel p̄ (the outer
face or a hole). The row (or column) of pixels which contains p, which is adjacent
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to p̄, and which extends to the left and the right (to the top and the bottom)
until some non-polygon pixel is hit must not be adjacent to a different hole (or
the outer face) other than the hole (or the outer face) the pixel p̄ corresponds
to. Also these pixels have a natural motivation.

Let us furthermore remark that after the pruning step in Quasi-Greedy,
every rectangle in the cover contains a private pixel (Lem. 2). This pixel is
an intuitive candidate to become a pixel in a pseudo stable set. This set would
actually pay for the whole cover. However, it is not clear whether one can control
how many pixels of this set can be contained in the same rectangle.

4.2 Using Boundary Covers

There is a simple 4-approximation algorithm for covering the boundary of an
orthogonal polygon [4]. In this context a natural question arises: Can we always
find an interior cover whose size is bounded from above by a constant multiple
of the size θboundary of an optimal boundary cover? The answer is “no”. Our
counterexample in Fig. 3 shows that there is an O (

√
n)-cover of the boundary

of the polygon in the left figure with maximal horizontal and vertical strips.
But the optimal interior cover needs Θ(n) rectangles since the white uncovered
pixels in the right figure are independent. Nevertheless, the latter observation is
actually very encouraging. We conjecture that one can find an interior cover of
size less than c1 ·θboundary +c2 ·α where c1 are c2 are appropriate constants. This
would imply a constant factor approximation for the rectangle cover problem.
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Fig. 3. A boundary cover may leave a non-constant fraction of pixels uncovered

4.3 Quasi-Prime Rectangles and Breaking Holes

There is a large class of polygons (e.g., polygons resulting from typical oligonu-
cleotide masks [11]) where the optimal cover is found after the first two steps
of the Quasi-Greedy algorithm in Section 4.1. Then the cover consists of only
prime and quasi-prime rectangles. This is of course in general not the case (see
Fig. 1). Now, consider the set U of pixels remained uncovered after step 2. We
can prove that there is an induced cycle (a hole) in G whose vertices correspond
to a subset of U . Covering each second edge of this hole extends the previous
partial cover. We call this covering step to “break a hole”. A straightforward
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algorithm is the following: while the polygon is uncovered, iteratively pick a
maximal set of quasi-prime rectangles, then find a hole and break it. We can
iteratively extend also the partial pseudo stable set. The quasi-prime rectangles
are paid for by quasi-leafs, which form a stable set. The rectangles which break
an even (odd) hole can all (but one) be paid for by a stable set, too.

We have experimented with related and extended ideas based on the obser-
vations sketched in Sections 4.2 and 4.3 and obtained encouraging results. These
methods and their approximation potential are currently under investigation.

5 Computational Experience

We experimented with small polygons occurring in VLSI mask design (instances
VLSI*), a set of standard fax images (instances ccitt*), and several black and
white images (instances marbles, mickey, . . . ). Further, we have two strategies
to construct random polygons. The first is to eliminate a varying fraction of
single pixels uniformly from a square of size up to 750 × 750 pixels. The second
is a union of uniformly placed rectangles of random sizes.

Table 1. Results for the primal and dual linear/integer programs. For each instance we

list its size in pixels, its number of pixels (as a fraction), and its number of rectangles.

For the dual and the primal programs (in that order) we give the optimal linear and

integer program objective function values. The ‘LP gap’ is the relative gap between

linear and integer program. Notice that instances mickey and night do not have a

fractional optimal solution with ‘nice’ fractions

instance characteristics dual (stable set size) primal (cover size)
Instance size density rectangles opt. LP opt. IP LP gap opt. LP opt. IP LP gap
VLSI1 68×35 50.25% 45 43.000 43 0.000% 43.000 43 0.000%
VLSI2 3841×298 95.34% 16694 4222.667 4221 0.039% 4222.667 4224 0.032%
VLSI3 148×135 45.09% 78 71.000 71 0.000% 71.000 71 0.000%
VLSI5 6836×1104 55.17% 192358 77231.167 77227 0.005% 77231.167 77234 0.004%
ccitt1 2376×1728 3.79% 27389 14377.000 14377 0.000% 14377.000 14377 0.000%
ccitt2 2376×1728 4.49% 30427 7422.000 7422 0.000% 7422.000 7422 0.000%
ccitt3 2376×1728 8.21% 40625 21085.000 21085 0.000% 21085.000 21086 0.005%
ccitt4 2376×1728 12.41% 101930 56901.000 56901 0.000% 56901.000 56901 0.000%
ccitt5 2376×1728 7.74% 46773 24738.500 24738 0.002% 24738.500 24739 0.002%
ccitt6 2376×1728 5.04% 30639 12013.000 12013 0.000% 12013.000 12014 0.008%
ccitt7 2376×1728 8.69% 85569 52502.500 52502 0.001% 52502.500 52508 0.010%
ccitt8 2376×1728 43.02% 41492 14024.500 14022 0.018% 14024.500 14025 0.004%
marbles 1152×813 63.49% 56354 44235.000 44235 0.000% 44235.000 44235 0.000%
mickey 334×280 75.13% 17530 9129.345 9127 0.026% 9129.345 9132 0.029%
day 480×640 64.63% 45553 32191.000 32190 0.000% 32191.000 32192 0.003%
night 480×640 96.02% 17648 7940.985 7938 0.038% 7940.985 7943 0.025%

The extremely small integrality gaps listed in Tab. 1 and experienced for
thousands of random polygons (not listed here) are a strong vote for our integer
programming approach. On the downside of it, integer programs for industrial

Available at http://www.cs.waikato.ac.nz/∼singlis/ccitt.html

1

1

http://www.cs.waikato.ac.nz/~singlis/ccitt.html
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Table 2. Details for the Quasi-Greedy algorithm of Section 4.1. We compare the

optimal cover size against ours (they differ by only 3–7%). The following columns list

the number of prime and quasi-prime rectangles, and those picked by the greedy step.

Then, the number of corner and border pixels in the constructed quasi stable set S is

given (the number of (quasi-)leafs equals the number of (quasi-)primes). Finally, we

state the maximal number of pixels of S in some rectangle, and the fraction of the

cover size for which S pays

Instance optimum cover size prime quasi-prime greedy corner border max pixels pays for
VLSI1 43 43 41 2 0 0 0 1 100.00%
VLSI2 4224 4701 1587 203 2911 1105 1279 4 88.79%
VLSI3 71 71 71 0 0 0 0 1 100.00%
ccitt1 14377 14457 10685 2099 1673 1632 28 2 99.91%
ccitt2 7422 7617 3587 409 3621 3574 29 3 99.76%
ccitt3 21086 21259 15691 2020 3548 3427 86 3 99.84%
ccitt4 56901 57262 42358 8605 6299 6110 59 2 99.77%
ccitt5 24739 24911 18529 2985 3397 3259 98 2 99.84%
ccitt6 12014 12132 8256 1049 2827 2764 35 2 99.77%
ccitt7 52508 52599 39230 10842 2525 2448 56 2 99.96%
ccitt8 14025 14303 7840 1353 5110 5023 54 3 99.77%
marbles 56354 44235 43548 687 0 0 0 1 100.00%
mickey 9132 9523 5582 690 3251 528 1593 3 88.13%
day 32192 32431 26308 3777 2346 749 900 4 97.85%
night 7943 8384 4014 501 3869 762 1810 4 84.53%

size polygons, e.g., from VLSI design are extremely large. The generation of
the integer programs consumes much more time than solving them which takes
typically only a few seconds using the standard solver CPLEX [13]. As a remedy
we propose a column generation approach, that is, a dynamic generation of the
variables of the linear program. This enables us to attack larger instances.

For random instances the relation between the different objective function
values is very similar to Tab. 1 and is not reported separately in this abstract. The
excellent performance of the Quasi-Greedy algorithm can be seen in Tab. 2.
We remark that we never observed more than 4 pixels of a pseudo stable set in
a rectangle, and the pseudo stable set pays for significantly more than 50% of
the cover size. This supports that Quasi-Greedy could be an 8-approximation
algorithm for the rectangle cover problem (see Section 4.1).

6 Conclusions

It is common that theory is complemented by computational experience. In this
paper we did the reverse: We found promising research directions by a careful
study of computational experiments. Finally, we propose:

Restatement of Erdős’ Question. Is it true that both, the integrality gap of our
primal and that of our dual integer program are bounded by a constant? The
example in Fig. 1 places lower bounds on these gaps of θ/θ̄ ≥ 16/15 and ᾱ/α ≥
15/14, implying the already known bound θ/α ≥ 8/7. We conjecture that these
gaps are in fact tight. Originally, we set out to find an answer to Erdős’ question.
We conclude with an answer in the affirmative, at least computationally.
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