
Using an Adaptive Memory Strategy to
Improve a Multistart Heuristic for

Sequencing by Hybridization

Eraldo R. Fernandes1 and Celso C. Ribeiro2

1 Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, Brazil

eraldoluis@inf.puc-rio.br
2 Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria 156, 24210-240 Niterói, Brazil
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Abstract. We describe a multistart heuristic using an adaptive memory
strategy for the problem of sequencing by hybridization. The memory-
based strategy is able to significantly improve the performance of mem-
oryless construction procedures, in terms of solution quality and pro-
cessing time. Computational results show that the new heuristic obtains
systematically better solutions than more involving and time consuming
techniques such as tabu search and genetic algorithms.

1 Problem Formulation

A DNA molecule may be viewed as a word in the alphabet {A,C,G,T} of nu-
cleotides. The problem of DNA sequencing consists in determining the sequence
of nucleotides that form a DNA molecule. There are currently two techniques for
sequencing medium-size molecules: gel electrophoresis and the chemical method.
The novel approach of sequencing by hybridization offers an interesting alterna-
tive to those above [8, 9].

Sequencing by hybridization consists of two phases. The first phase is a bio-
chemical experiment involving a DNA array and the molecule to be sequenced,
i.e. the target sequence. A DNA array is a bidimensional grid in which each cell
contains a small sequence of nucleotides which is called a probe. The set of all
probes in a DNA array is denominated a library. Typically, a DNA array rep-
resented by C(�) contains all possible probes of a fixed size �. After the array
has been generated, it is introduced into an environment with many copies of
the target sequence. During the experiment, a copy of the target sequence re-
acts with a probe if the latter is a subsequence of the former. This reaction is
called hybridization. At the end of the experiment, it is possible to determine
which probes of the array reacted with the target sequence. This set of probes
contains all sequences of size � that appear in the target sequence and is called
the spectrum. An illustration of the hybridization experiment involving the tar-
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Fig. 1. Hybridization experiment involving the target sequence ATAGGCAGGA and

all probes of size � = 4

get sequence ATAGGCAGGA and C(4) is depicted in Figure 1. The highlighted
cells are those corresponding to the spectrum.

The second phase of the sequencing by hybridization technique consists in
using the spectrum to determine the target sequence. The latter may be viewed
as a sequence formed by all n − � + 1 probes in the spectrum, in which the last
�−1 letters of each probe coincide with the first �−1 letters of the next. However,
two types of errors may be introduced along the hybridization experiment. False
positives are probes that appear in the spectrum, but not in the target sequence.
False negatives are probes that should appear in the spectrum, but do not. A
particular case of false negatives is due to probes that appear multiple times
in the target sequence, since the hybridization experiment is not able to detect
the number of repetitions of the same probe. Therefore, a probe appearing m
times in the target sequence will generate m− 1 false negatives. The problem of
sequencing by hybridization (SBH) is formulated as follows: given the spectrum
S, the probe length �, the size n and the first probe s0 of the target sequence,
find a sequence with length smaller than or equal to n containing a maximum
number of probes. The maximization of the number of probes of the spectrum
corresponds to the minimization of the number of errors in the solution. Errors
in the spectrum make the reconstruction problem NP-hard [5].

An instance of SBH may be represented by a directed weighted graph G(V,E),
where V = S is the set of nodes and E = {(u, v) | u, v ∈ S} is the set of arcs. The
weight of the arc (u, v) is given by w(u, v) = �−o(u, v), where o(u, v) is the size of
the largest sequence that is both a suffix of u and a prefix of v. The value o(u, v) is
the superposition between probes u and v. A feasible solution to SBH is an acyclic
path in G emanating from node s0 and with total weight smaller than or equal to
n− �. This path may be represented by an ordered node list a =< a1, . . . , ak >,
with ai ∈ S, i = 1, . . . , k. Let S(a) = {a1, . . . , ak} be the set of nodes visited by
a path a and denote by |a| = |S(a)| the number of nodes in this path. The latter
is a feasible solution to SBH if and only if a1 = s0, ai �= aj for all ai, aj ∈ S(a),
and w(a) ≤ n − �, where w(a) =

∑
h=1,...,|a|−1 w(ah, ah+1) is the sum of the
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(a) No errors in the spectrum (b) Errors in the spectrum

Fig. 2. Graphs and solutions for the target sequence ATAGGCAGGA with the probe

size � = 4: (a) no errors in the spectrum, (b) one false positive error (GGCG) and

one false negative error (GGCA) in the spectrum (not all arcs are represented in the

graph)

weights of all arcs in the path. Therefore, SBH consists in finding a maximum
cardinality path satisfying the above constraints.

The graph associated with the experiment depicted in Figure 1 is given in
Figure 2 (a). The solution is a path visiting all nodes and using only unit weight
arcs, since there are no errors in the spectrum. The example in Figure 2 (b)
depicts a situation in which probe GGCA was erroneously replaced by probe
GGCG, introducing one false positive and one false negative error. The new
optimal solution does not visit all nodes (due to the false positive) and uses one
arc with weight equal to 2 (due to the false negative).

Heuristics for SBH, handling both false positive and false negative errors,
were proposed in [3, 4, 6]. We propose in the next section a new memory-based
multistart heuristic for SBH, also handling both false positive and false negative
errors. The algorithm is based on an adaptive memory strategy using a set
of elite solutions visited along the search. Computational results illustrating
the effectiveness of the new memory-based heuristic are reported in Section 3.
Concluding remarks are made in the final section.

2 Memory-Based Multistart Heuristic

The memory-based multistart heuristic builds multiple solutions using a greedy
randomized algorithm. The best solution found is returned by the heuristic. An
adaptive memory structure stores the best elite solutions found along the search,
which are used within an intensification strategy [7].

The memory is formed by a pool Q that stores q elite solutions found along
the search. It is initialized with q null solutions with zero probes each. A new
solution a is a candidate to be inserted into the pool if |a| > mina′∈Q |a′|. This
solution replaces the worst in the pool if |a| > maxa′∈Q |a′| (i.e., a is better
than the best solution currently in the pool) or if mina′∈Q dist(a, a′) ≥ d, where
d is a parameter of the algorithm and dist(a, a′) is the number of probes with
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different successors in a and a′ (i.e., a is better than the worst solution cur-
rently in the pool and sufficiently different from every other solution in the
pool).

The greedy randomized algorithm iteratively extends a path a initially formed
exclusively by probe s0. At each iteration, a new probe is appended at the end
of the path a. This probe is randomly selected from the restricted candidate list
R = {v ∈ S \ S(a) | o(u, v) ≥ (1 − α) · maxt∈S\S(a) o(u, t) and w(a) + w(u, v) ≤
n − �}, where u is the last probe in a and α ∈ [0, 1] is a parameter. The list R
contains probes with a predefined minimum superposition with the last probe
in a, restricting the search to more promising regions of the solution space. The
construction of a solution stops when R turns up to be empty.

The probability p(u, v) of selecting a probe v from the restricted candidate
list R to be inserted after the last probe u in the path a is computed using the
superposition between probes u and v, and the frequency in which the arc (u, v)
appears in the set Q of elite solutions. We define e(u, v) = λ · x(u, v) + y(u, v),
where x(u, v) = mint∈S\S(a){w(u, t)/w(u, v)} is higher when the superposition
between probes u and v is larger, y(u, v) =

∑
a′′∈Q|(u,v)∈a′′{|a′′|/maxa′∈Q |a′|} is

larger for arcs (u, v) appearing more often in the elite set Q, and λ is a parameter
used to balance the two criteria. Then, the probability of selecting a probe v to
be inserted after the last probe u in the path a is given by

p(u, v) =
e(u, v)

∑
t∈R e(u, t)

.

The value of λ should be high in the beginning of the algorithm, when the
information in the memory is still weak. The value of α should be small in

procedure MultistartHeuristic(S, s0, �, n)
1. Initialize o, w, α, q, d, Q;
2. a∗ ← null;
3. for i = 1 to N do
4. Set a ← (s0);
5. Build the restricted candidate list R;
6. while R �= ∅ do
7. Compute the selection probability for each probe v ∈ R;
8. Randomly select a probe v ∈ R;
9. Extend the current solution a by appending v to its end;
10. Update the restricted candidate list R;
11. end;
12. Use a to update the pool of elite solutions Q;
13. if |a| > |a∗| then set a∗ ← a;
14. end;
15. return a∗;
end;

Fig. 3. Memory-based multistart heuristic
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the beginning, to allow for the construction of good solutions by the greedy
randomized heuristic and so as to quickly enrich the memory. The value of α
is progressively increased along the algorithm when the weight λ given to the
superposition information decreases, to increase the diversity of the solutions in
the list R.

We sketch in Figure 3 the pseudo-code with the main steps of the memory-
based multistart heuristic, in which N iterations are performed.

3 Numerical Results

The memory-based multistart heuristic was implemented in C++, using version
3.3.2 of the GNU compiler. The rand function was used for the generation of
pseudo-random numbers. The computational experiments were performed on a
2.4 GHz Pentium IV machine with 512 MB of RAM.

Two sets of test instances have been generated from human and random
DNA sequences. Instances in group A were built from 40 human DNA sequences
obtained from GenBank [2], as described in [4]. Prefixes of size 109, 209, 309, 409,
and 509 were extracted from these sequences. For each prefix, a hybridization
experiment with the array C(10) was simulated, producing spectra with 100,
200, 300, 400, and 500 probes. Next, false negatives were simulated by randomly
removing 20% of the probes in each spectrum. False positives were simulated
by inserting 20% of new probes in each spectrum. Overall, we have generated
200 instances in this group, 40 of each size. Instances in group R were generated
from 100 random DNA sequences with prefixes of size 100, 200, . . ., and 1000.
Once again, 20% false negatives and 20% false positives have been generated.
There are 100 instances of each size in this group, in a total of 1000 instances.

Preliminary computational experiments have been performed to tune the
main parameters of the algorithm. The following settings were selected: N = 10n
(number of iterations performed by the multistart heuristic), q = n/80 (size of
the pool of elite solutions), and d = 2 (minimum difference for a solution to
be accepted in the pool). Parameters α and λ used by the greedy randomized
construction heuristic are self-tuned. Iterations of this heuristic are grouped in
20 blocks. Each block performs n/2 iterations. In the first block, λ = 100q. In
the second block, λ = 10q. The value of λ is reduced by q at each new block,
until it is made equal to zero. The value of α is initialized according to Tables 1
and 2, and increased by 0.1 after every five blocks of n/2 iterations, until it is
made equal to one.

Two versions of the MultistartHeuristic algorithm described in Figure 3
were implemented: MS is a purely multistart procedure that does not make use of
memory, while MS+Mem fully exploits the adaptive memory strategy described

Table 1. Initial values of α for the instances in group R

n 100 200 300 400 500 600 700 800 900 1000
α 0.5 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0
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Table 2. Initial values of α for the instances in group A

n 109 209 309 409 509
α 0.5 0.3 0.2 0.1 0.1

in the previous section. To evaluate the quality of the solutions produced by the
heuristics, we performed the alignment of their solutions with the corresponding
target sequences, as in [4]. The similarity between two sequences is defined as the
fraction (in percent) of symbols that coincide in their alignment. A similarity
of 100% means that the two sequences are identical. Average similarities and
average computation times in seconds over all test instances in group R for
both heuristics are displayed in Figure 4. These results clearly illustrate the
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Fig. 4. Computational results obtained by heuristics MS+Mem and MS for the in-

stances in group R
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Fig. 5. Probes in the best solutions found by heuristics MS and MS+Mem for an

instance with n = 1000 from group R

contribution of the adaptive memory strategy to improve the performance of
the purely multistart heuristic.

We have performed another experiment to further evaluate the influence of
the adaptive memory strategy on the multistart heuristic. We illustrate our
findings for one specific instance with size n = 1000 from group R. Figure 5
(a) displays the number of probes in the best solution obtained by each heuris-
tic along 10000 iterations. We notice that the best solution already produced
by MS+Mem until a given iteration is consistently better than that obtained
by MS, in particular after a large number of iterations have been performed.
Figure 5 (b) depicts the same results along 8.7 seconds of processing time.
The purely multistart heuristic seems to freeze and prematurely converge to
a local minimum very quickly. The use of the adaptive memory strategy leads
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the heuristic to explore other regions of the solution space and to find better
solutions.

To give further evidence concerning the performance of the two heuristics,
we used the methodology proposed by Aiex et al. [1] to assess experimentally
the behavior of randomized algorithms. This approach is based on plots showing
empirical distributions of the random variable time to target solution value. To
plot the empirical distribution, we select a test instance, fix a target solution
value, and run algorithms MS and MS+Mem 100 times each, recording the
running time when a solution with cost at least as good as the target value
is found. For each algorithm, we associate with the i-th sorted running time
ti a probability pi = (i − 1

2 )/100 and plot the points zi = (ti, pi), for i =
1, . . . , 100.

Since the relative performance of the two heuristics is quite similar over
all test instances, we selected one particular instance of size n = 500 from
group R and used its optimal value as the target. The computational results
are displayed in Figure 6. This figure shows that the heuristic MS+Mem us-
ing the adaptive memory strategy is capable of finding target solution values
with higher probability or in smaller computation times than the pure mul-
tistart heuristic MS, illustrating once again the contribution of the adaptive
memory strategy. These results also show that the heuristic MS+Mem is more
robust.
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MS+Mem and MS for an instance of size n = 500 from group R

We have also considered the behavior of the heuristic MS+Mem when the
number of errors and the size of the probes vary. The algorithm was run on
randomly generated instances as those in group R, for different rates of false
negative and false positive errors: 0%, 10%, 20%, and 30%. Similarly, the
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Table 3. Average similarities for the instances in group A

n

Algorithm 109 209 309 409 509

TS 98.6 94.1 89.6 88.5 80.7
OW 99.4 95.2 95.7 92.1 90.1
GA 98.3 97.9 99.1 98.1 93.5

MS+Mem 100.0 100.0 99.2 99.4 99.5

algorithm was also run on randomly generated instances as those in group R
with different probe sizes � = 7, 8, 9, 10, 11. Numerical results are displayed in
Figure 7.
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Table 4. Average computation times in seconds for the instances in group A

n

Algorithm 109 209 309 409 509

TS <1.0 5.0 14.0 28.0 51.0
OW <1.0 <1.0 <1.0 <1.0 <1.0
GA 0.1 0.3 0.9 1.5 2.1

MS+Mem 0.1 0.4 0.8 1.6 3.0

Table 5. Target sequences exactly reconstructed for the instances in group A

n

Algorithm 109 209 309 409 509

TS 28 23 17 10 10
OW 28 20 21 13 14
GA 37 30 37 30 28

MS+Mem 40 40 39 39 39

The memory-based multistart heuristic MS+Mem was compared with the
tabu search algorithm (TS) in [4], the overlapping windows heuristic (OW) in [3],
and the genetic algorithm (GA) in [6]. The numerical results are summarized in
Tables 3 and 4, which depict the average similarities and the average computation
times in seconds observed for each algorithm over the 40 instances with the
same size in group A. The heuristic MS+Mem found much better solutions than
the others. The alignments observed for the solutions produced by MS+Mem
are systematically higher. The new heuristic MS+Mem is faster than TS and
competitive with GA (the results displayed for the overlapping windows heuristic
were obtained on a CRAY T3E-900 supercomputer).

Further comparative results for the four algorithms are given in Table 5, in
which we give the number of target sequences exactly reconstructed for each
algorithm over the 40 instances with the same size in group A. The heuristic
MS+Mem was able to reconstruct the 40 original sequences of size 109 and 209,
and 39 out of the 40 instances of sizes 309, 409, and 509, corresponding to a
total of 197 out of the 200 test instances in group A. The overlapping windows
and the tabu search heuristics found, respectively, only 96 and 88 out of the 200
original sequences.

We also compared the new heuristic MS+Mem with the genetic algorithm for
the instances in group R. Average similarities and average computation times in
seconds are shown in Figure 8. Table 6 depicts the number of target sequences
exactly reconstructed by MS+Mem and the genetic algorithm over the 100 in-
stances of each size in group R. Also for the instances in this group, the new
heuristic outperformed the genetic algorithm both in terms of solution quality
and computation times.
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Fig. 8. Computational results obtained by the heuristic MS+Mem and the genetic

algorithm (GA) for the instances in group R

Table 6. Target sequences exactly reconstructed for the instances in group R

n

Algorithm 100 200 300 400 500 600 700 800 900 1000

GA 70 61 55 37 23 11 9 3 1 2
MS+Mem 79 74 83 72 58 52 24 14 11 3

4 Concluding Remarks

We proposed a multistart heuristic for the problem of sequencing by hybridiza-
tion, based on an intensification strategy that makes use of an adaptive memory.
The adaptive memory strategy makes use of a set of elite solutions found along
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the search. The choice of the new element to be inserted into the partial solution
at each iteration of a greedy randomized construction procedure is based not
only on greedy information, but also on frequency information extracted from
the memory.

Computational results on test instances generated from human and random
DNA sequences have shown that the memory-based strategy is able to signifi-
cantly improve the performance of a memoryless construction procedure purely
based on greedy choices. The memory-based multistart heuristic obtained better
results than more involving and time consuming techniques such as tabu search
and genetic algorithms, both in terms of solution quality and computation times.

The use of adaptive memory structures that are able to store information
about the relative positions of the tasks in elite solutions seems to be particularly
suited to scheduling problems in which blocks formed by the same tasks in the
same order often appear in the best solutions.
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