
Efficient Convergence to Pure Nash Equilibria
in Weighted Network Congestion Games�

Panagiota N. Panagopoulou and Paul G. Spirakis

Computer Technology Institute, Riga Feraiou 61, 26221, Patras, Greece

panagopp@hermes.cti.gr

Computer Engineering and Informatics Department, Patras University, Greece

spirakis@cti.gr

Abstract. In large-scale or evolving networks, such as the Internet,
there is no authority possible to enforce a centralized traffic manage-
ment. In such situations, Game Theory and the concepts of Nash equi-
libria and Congestion Games [8] are a suitable framework for analyzing
the equilibrium effects of selfish routes selection to network delays.
We focus here on layered networks where selfish users select paths to
route their loads (represented by arbitrary integer weights). We assume
that individual link delays are equal to the total load of the link. We
focus on the algorithm suggested in [2], i.e. a potential-based method
for finding pure Nash equilibria (PNE) in such networks. A superficial
analysis of this algorithm gives an upper bound on its time which is
polynomial in n (the number of users) and the sum of their weights. This
bound can be exponential in n when some weights are superpolynomial.
We provide strong experimental evidence that this algorithm actually
converges to a PNE in strong polynomial time in n (independent of the
weights values). In addition we propose an initial allocation of users
to paths that dramatically accelerates this algorithm, compared to an
arbitrary initial allocation. A by-product of our research is the discovery
of a weighted potential function when link delays are exponential to their
loads. This asserts the existence of PNE for these delay functions and
extends the result of [2].

1 Introduction

In large-scale or evolving networks, such as the Internet, there is no authority
possible to employ a centralized traffic management. Besides the lack of central
regulation, even cooperation of the users among themselves may be impossi-
ble due to the fact that the users may not even know each other. A natural
assumption in the absence of central regulation and coordination is to assume

� This work was partially supported by the EU within the Future and Emerging
Technologies Programme under contract IST200133135 (CRESCCO) and within the
6th Framework Programme under contract 001907 (DELIS).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 203–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

;

204 P.N. Panagopoulou and P.G. Spirakis

that network users behave selfishly and aim at optimizing their own individual
welfare. Thus, it is of great importance to investigate the selfish behavior of users
so as to understand the mechanisms in such non-cooperative network systems.

Since each user seeks to determine the shipping of its own traffic over the
network, different users may have to optimize completely different and even
conflicting measures of performance. A natural framework in which to study such
multi-objective optimization problems is (non-cooperative) game theory. We can
view network users as independent agents participating in a non-cooperative
game and expect the routes chosen by users to form a Nash equilibrium in the
sense of classical game theory: a Nash equilibrium is a state of the system such
that no user can decrease his individual cost by unilaterally changing his strategy.

Users selfishly choose their private strategies, which in our environment cor-
respond to paths from their sources to their destinations. When routing their
traffics according to the strategies chosen, the users will experience an expected
latency caused by the traffics of all users sharing edges (i.e the latency on the
edges depends on their congestion). Each user tries to minimize his private cost,
expressed in terms of his individual latency. If we allow as strategies for each user
all probability distributions on the set of their source-destination paths, then a
Nash equilibrium is guaranteed to exist. It is very interesting however to explore
the existence of pure Nash equilibria (PNE) in such systems, i.e. situations in
which each user is deterministically assigned on a path from which he has no
incentive to unilaterally deviate.

Rosenthal [8] introduced a class of games, called congestion games, in which
each player chooses a particular subset of resources out of a family of allowable
subsets for him (his strategy set), constructed from a basic set of primary re-
sources for all the players. The delay associated with each primary resource is
a non-decreasing function of the number of players who choose it, and the total
delay received by each player is the sum of the delays associated with the pri-
mary resources he chooses. Each game in this class possesses at least one Nash
equilibrium in pure strategies. This result follows from the existence of a real-
valued function (an exact potential [6]) over the set of pure strategy profiles with
the property that the gain of a player unilaterally shifting to a new strategy is
equal to the corresponding increment of the potential function.

In a multicommodity network congestion game the strategy set of each player
is represented as a set of origin-destination paths in a network, the edges of which
play the role of resources. If all origin-destination pairs of the users coincide
we have a single commodity network congestion game. In a weighted congestion
game we allow users to have different demands for service, and thus affect the
resource delay functions in a different way, depending on their own weights.
Hence weighted congestion games are not guaranteed to possess a PNE.

Related Work. As already mentioned, the class of (unweighted) congestion games
is guaranteed to have at least one PNE. In [1] it is proved that a PNE for any
(unweighted) single commodity network congestion game can be constructed in
polynomial time, no matter what resource delay functions are considered (so
long as they are non-decreasing functions with loads). On the other hand, it is

Efficient Convergence to Pure Nash Equilibria 205

shown that even for an unweighted multicommodity network congestion game it
is PLS-complete to find a PNE, though it certainly exists.

For the special case of single commodity network congestion games where the
network consists of parallel edges from a unique origin to a unique destination
and users have varying demands, it was shown in [3] that there is always a pure
Nash equilibrium which can be constructed in polynomial time.

[5] deals with the problem of weighted parallel-edges congestion games with
user-specific costs: each allowable strategy of a user consists of a single resource
and each user has his own private cost function for each resource. It is shown
that all such games involving only two users, or only two possible strategies for
all the users, or equal delay functions, always possess a PNE. However, it is
shown that even a 3-user, 3-strategies, weighted parallel-edges congestion game
may not possess a PNE.

In [2] it is proved that even for a weighted single commodity network conges-
tion game with resource delays being either linear or 2-wise linear functions of
their loads, there may be no PNE. Nevertheless, it is proved that for the case of
a weighted single commodity �-layered network congestion game (to be defined
later) with resource delays identical to their loads, at least one PNE exists and
can be computed in pseudo-polynomial time.

Our Results. We focus our interest on weighted �-layered network congestion
games with resource delays equal to their loads. As already mentioned, any such
game possesses a PNE, and the algorithm suggested in [2] requires at most a
pseudo-polynomial number of steps to reach an equilibrium; this bound however
has not yet been proven to be tight. The algorithm starts with any initial al-
location of users on paths and iteratively allows each unsatisfied user to switch
to any other path where he could reduce his cost. We experimentally show that
the algorithm actually converges to a PNE in polynomial time for a variety of
networks and distributions of users’ weights. In addition, we propose an initial
allocation of users onto paths that, as our experiments show, leads to a significant
reduction of the total number of steps required by the algorithm, as compared
to an arbitrary initial allocation.

Moreover, we present a b-potential function for any single commodity net-
work congestion game with resource delays exponential to their loads, thus as-
suring the existence of a PNE in any such game (Theorem 2).

2 Definitions and Notation

Games, Congestion Games and Weighted Congestion Games. A game Γ =
〈N, (Πi)i∈N , (ui)i∈N 〉 in strategic form is defined by a finite set of players N =
{1, . . . , n}, a finite set of strategies Πi for each player i ∈ N , and a payoff func-
tion ui : Π → IR for each player, where Π ≡ ×i∈NΠi is the set of pure strategy
profiles or configurations. A game is symmetric if all players are indistinguish-
able, i.e. all Πi’s are the same and all ui’s, considered as a function of the choices
of the other players, are identical symmetric functions of n− 1 variables. A pure

206 P.N. Panagopoulou and P.G. Spirakis

Nash equilibrium (PNE) is a configuration π = (π1, . . . , πn) such that for each
player i, ui(π) ≥ ui(π1, . . . , π

′
i, . . . , πn) for any π′

i ∈ Πi. A game may not pos-
sess a PNE in general. However, if we extend the game to include as strategies
for each i all possible probability distributions on Πi and if we extend the pay-
off functions ui to capture expectation, then an equilibrium is guaranteed to
exist [7].

A congestion model 〈N,E, (Πi)i∈N , (de)e∈E〉 is defined as follows. N denotes
the set of players {1, . . . , n}. E denotes a finite set of resources. For i ∈ N let
Πi be the set of strategies of player i, where each �i ∈ Πi is a nonempty subset
of resources. For e ∈ E let de : {1, . . . , n} → IR denote the delay function, where
de(k) denotes the cost (e.g. delay) to each user of resource e, if there are exactly
k players using e. The congestion game associated with this congestion model
is the game in strategic form 〈N, (Πi)i∈N , (ui)i∈N 〉, where the payoff functions
ui are defined as follows: Let Π ≡ ×i∈NΠi. For all � = (�1, . . . , �n) ∈ Π
and for every e ∈ E let σe(�) be the number of users of resource e according
to the configuration �: σe(�) = |{i ∈ N : e ∈ �i}| . Define ui : Π → IR by
ui(�) = −∑

e∈�i
de(σe(�)).

In a weighted congestion model we allow the users to have different demands,
and thus affect the resource delay functions in a different way, depending on their
own weights. A weighted congestion model 〈N, (wi)i∈N , E, (Πi)i∈N , (de)e∈E〉 is
defined as follows. N , E and Πi are defined as above, while wi denotes the
demand of player i and for each resource e ∈ E, de(·) is the delay per user that
requests its service, as a function of the total usage of this resource by all the
users. The weighted congestion game associated with this congestion model is the
game in strategic form 〈(wi)i∈N , (Πi)i∈N , (ui)i∈N 〉, where the payoff functions
ui are defined as follows. For any configuration � ∈ Π and for all e ∈ E, let
Λe(�) = {i ∈ N : e ∈ �i} be the set of players using resource e according to �.
The cost λi(�) of user i for adopting strategy �i ∈ Πi in a given configuration
� is equal to the cumulative delay λ�i

(�) on the resources that belong to �i:
λi(�) = λ�i

(�) =
∑

e∈�i
de(θe(�)) where, for all e ∈ E, θe(�) ≡ ∑

i∈Λe(�) wi

is the load on resource e with respect to the configuration �. The payoff function
for player i is then ui(�) = −λi(�). A configuration � ∈ Π is a PNE if and
only if, for all i ∈ N , λ�i

(�) ≤ λπi
(�−i, πi) ∀πi ∈ Πi, where (�−i, πi) is the

same configuration as � except for user i that has now been assigned to path
πi. Since the payoff functions ui can be implicitly computed by the resource
delay functions de, in the following we will denote a weighted congestion game
by 〈(wi)i∈N , (Πi)i∈N , (de)e∈E〉.

In a network congestion game the families of subsets Πi are presented im-
plicitly as paths in a network. We are given a directed network G = (V,E) with
the edges playing the role of resources, a pair of nodes (si, ti) ∈ V × V for each
player i and the delay function de for each e ∈ E. The strategy set of player i
is the set of all paths from si to ti. If all origin-destination pairs (si, ti) of the
players coincide with a unique pair (s, t) we have a single commodity network
congestion game and then all users share the same strategy set, hence the game
is symmetric. If users have different demands, we refer to weighted network con-

Efficient Convergence to Pure Nash Equilibria 207

gestion games in the natural way. In the case of a weighted single commodity
network congestion game however the game is not necessarily symmetric, since
the users have different demands and thus their cost functions will also differ.

Potential Functions. Fix some vector b ∈ IRn
>0. A function F : ×i∈NΠi → IR is a

b-potential for the weighted congestion game Γ = 〈(wi)i∈N , (Πi)i∈N , (de)e∈E〉 if
∀� ∈ ×i∈NΠi,∀i ∈ N,∀πi ∈ Πi, λi(�)−λi(�−i, πi) = bi · (F (�)−F (�−i, πi)).
F is an exact potential for Γ if bi = 1 for all i ∈ N . It is well known [6] that if
there exists a b-potential for a game Γ , then Γ possesses a PNE.

Layered Networks. Let � ≥ 1 be an integer. A directed network (V,E) with a
distinguished source-destination pair (s, t), s, t ∈ V, is �-layered if every directed
s − t path has length exactly � and each node lies on a directed s − t path. The
nodes of an �-layered network can be partitioned into � + 1 layers, V0, V1, . . . ,
V�, according to their distance from the source node s. Since each node lies on
directed s− t path, V0 = {s} and V� = {t}. Similarly we can partition the edges
E of an �-layered network in � subsets E1, . . . , E� where for all j ∈ {1, . . . , �},
Ej = {e = (u, v) ∈ E : u ∈ Vj−1 and v ∈ Vj}.

3 The Problem

We focus our interest on the existence and tractability of pure Nash equilibria
in weighted �-layered network congestion games with resource delays identical
to their loads. Consider the �-layered network G = (V,E) with a unique source-
destination pair (s, t) and the weighted single commodity network congestion
game 〈(wi)i∈N ,P, (de)e∈E〉 associated with G, such that P is the set of all di-
rected s− t paths of G and de(x) = x for all e ∈ E. Let � = (�1, . . . , �n) be an
arbitrary configuration and recall that θe(�) denotes the load of resource e ∈ E
under configuration �. Since resource delays are equal to their loads, for all
i ∈ N it holds that λi(�) = λ�i

(�) =
∑

e∈�i
θe(�) =

∑
e∈�i

∑
j∈N |e∈�j

wj .
A user i ∈ N is satisfied in the configuration � ∈ Pn if he has no incentive to

unilaterally deviate from �, i.e. if for all s−t paths π ∈ P, λ�i
(�) ≤ λπ(�−i, π).

The last inequality can be written equivalently

λ�i
(�−i) + �wi ≤ λπ(�−i) + �wi ⇐⇒ λ�i

(�−i) ≤ λπ(�−i) ,

hence user i is satisfied if and only if he is assigned to the shortest s − t path
calculated with respect to the configuration �−i of all the users except for i.
The configuration � is a PNE if and only if all users are satisfied in �. In [2] it
was shown that any such weighted �-layered network congestion game possesses
a PNE that can be computed in pseudo-polynomial time:

Theorem 1 ([2]). For any weighted �-layered network congestion game with
resource delays equal to their loads, at least one PNE exists and can be computed
in pseudo-polynomial time.

208 P.N. Panagopoulou and P.G. Spirakis

Proof (sketch). The b-potential function establishing the result is

Φ(�) =
∑

e∈E

(θe(�))2

where, ∀i ∈ N, bi = 1
2wi

. ��
In Sect. 4 we present the pseudo-polynomial algorithm Nashify() for the com-
putation of a PNE for a weighted �-layered network congestion game, while in
Sect. 6 we experimentally show that such a PNE can actually be computed in
polynomial time, as our following conjecture asserts:

Conjecture 1. Algorithm Nashify() converges to a PNE in polynomial time.

4 The Algorithm

The algorithm presented below converts any given non-equilibrium configuration
into a PNE by performing a sequence of greedy selfish steps. A greedy selfish
step is a user’s change of his current pure strategy (i.e. path) to his best pure
strategy with respect to the current configuration of all other users.

Algorithm Nashify(G, (wi)i∈N)

Input: �-layered network G and a set N of users, each user i having weight wi

Output: configuration � which is a PNE

1. begin
2. select an initial configuration � = (�1, . . . , �n)
3. while ∃ user i such that λ�i(�−i) > λs(�−i) where s = Shortest Path(�−i)
4. �i := Shortest Path(�−i)
5. return �
6. end

The above algorithm starts with an initial allocation of each user i ∈ N on
an s− t path �i of the �-layered network G. The algorithm iteratively examines
whether there exists any user that is unsatisfied. If there is such a user, say i,
then user i performs a greedy selfish step, i.e. he switches to the shortest s − t
path according to the configuration �−i. The existence of the potential function
Φ assures that the algorithm will terminate after a finite number of steps at a
configuration from which no user will have an incentive to deviate, i.e. at a PNE.

Complexity Issues. Let W =
∑

i∈N wi. Note that in any configuration � ∈ Pn

and for all j ∈ {1, . . . , �} it holds that
∑

e∈Ej
θe(�) = W. It follows that

Φ(�) =
∑

e∈E

(θe(�))2 =
�∑

j=1

∑

e∈Ej

(θe(�))2 ≤
�∑

j=1

⎛

⎝
∑

e∈Ej

θe(�)

⎞

⎠

2

= �W 2 .

Without loss of generality assume that the users have integer weights. At each
iteration of the algorithm Nashify() an unsatisfied user performs a greedy selfish

Efficient Convergence to Pure Nash Equilibria 209

step, so his cost must decrease by at least 1 and thus the potential function Φ
decreases by at least 2mini wi ≥ 2. Hence the algorithm requires at most 1

2�W 2

steps so as to converge to a PNE.

Proposition 1. Suppose that (maxi wi)
2

mini wi
= O(nk) for some constant k. Then

algorithm Nashify() will converge to a PNE in polynomial time.

Proof. Observe that Φ(�) ≤ �W 2 ≤ �(n maxi wi)2 = �n2 mini wi · O(nk), which
implies that the algorithm will reach a PNE in O(�nk+2) steps. ��

5 The Case of Exponential Delay Functions

In this section we deal with the existence of pure Nash equilibria in weighted
single commodity network congestion games with resource delays being expo-
nential to their loads. Let G = (V,E) be any single commodity network (not
necessarily layered) and denote by P the set of all s − t paths in it from the
unique source s to the unique destination t. Consider the weighted network con-
gestion game Γ = 〈(wi)i∈N ,P, (de)e∈E〉 associated with G, such that for any
configuration � ∈ Pn and for all e ∈ E, de(θe(�)) = exp(θe(�)). We next
show that F (�) =

∑
e∈E exp(θe(�)) is a b-potential for such a game and some

positive n-vector b, assuring the existence of a PNE.

Theorem 2. For any weighted single commodity network congestion game with
resource delays exponential to their loads, at least one PNE exists.

Proof. Let � ∈ Pn be an arbitrary configuration. Let i be a user of demand wi

and fix some path πi ∈ P. Denote �′ ≡ (�−i, πi). Observe that

λi(�) − λi(�′) =
∑

e∈�i\πi

exp(θe(�−i) + wi) −
∑

e∈πi\�i

exp(θe(�−i) + wi)

= exp(wi) ·
⎛

⎝
∑

e∈�i\πi

exp(θe(�−i)) −
∑

e∈πi\�i

exp(θe(�−i))

⎞

⎠ .

Note that, for all e /∈ {{�i \ πi}∪ {πi \�i}}, it holds that θe(�) = θe(�′). Now

F (�) − F (�′) =
∑

e∈�i\πi

exp (θe(�−i) + wi) − exp(θe(�−i))

+
∑

e∈πi\�i

exp(θe(�−i)) − exp(θe(�−i) + wi)

=
exp(wi) − 1

exp(wi)
(
λi(�) − λi(�′)

)
.

Thus, F is a b-potential for our game, where ∀i ∈ N, bi = exp(wi)
exp(wi)−1 , assuring

the existence of at least one PNE. ��

210 P.N. Panagopoulou and P.G. Spirakis

6 Experimental Evaluation

Implementation Details. We implemented algorithm Nashify() in C++ program-
ming language using several advanced data types of LEDA [4]. In our imple-
mentation, we considered two initial allocations of users on paths: (1) Random
allocation: each user assigns its traffic uniformly at random on an s− t path and
(2) Shortest Path allocation: users are sorted according to their weights, and the
maximum weighted user among those that have not been assigned a path yet
selects a path of shortest length, with respect to the loads on the edges caused
by the users of larger weights.

Note that, in our implementation, the order in which users are checked for
satisfaction (line 3 of algorithm Nashify()) is the worst possible, i.e. we sort
users according to their weights and, at each iteration, we choose the minimum
weighted user among the unsatisfied ones to perform a greedy selfish step. By
doing so, we force the potential function to decrease as less as possible and thus
we maximize the number of iterations, so as to be able to better analyze the
worst-case behavior of the algorithm.

6.1 Experimental Setup

Networks. Figure 1 shows the �-layered networks considered in our experimental
evaluation of algorithm Nashify(). Network 1 is the simplest possible layered
network and Network 2 is a generalization of it. Observe that the number of
possible s − t paths of Network 1 is 3, while the number of possible s − t paths
for Network 2 is 35. Network 3 is an arbitrary dense layered network and Network
4 is the 5×5 grid. Network 5 is a 4-layered network with the property that layers
1, 2, 3 form a tree rooted at s and layer 4 comprises all the edges connecting the
leaves of this tree with t.

s t

s

t

s t

s t

s

t

Network 1 Network 2

Network 4Network 3 Network 5

Fig. 1. The s − t layered networks considered

Distribution of weights. For each network, we simulated the algorithm Nashify()
for n = 10, 11, . . . , 100 users. Obviously, if users’ weights are polynomial in
n then the algorithm will definitely terminate after a polynomial number of
steps. Based on this fact, as well as on Proposition 1, we focused on instances

Efficient Convergence to Pure Nash Equilibria 211

where some users have exponential weights. More specifically, we considered
the following four distributions of weights: (a) 10% of users have weight 10n/10

and 90% of users have weight 1, (b) 50% of users have weight 10n/10 and 50%
of users have weight 1, (c) 90% of users have weight 10n/10 and 10% of users
have weight 1, and (d) users have uniformly at random selected weights in the
interval [1, 10n/10]. Distributions (a)–(c), albeit simple, represent the distribution
of service requirements in several communication networks, where a fraction of
users has excessive demand that outweighs the demand of the other users.

6.2 Results and Conclusions

Figures 2–6 show, for each network and each one of the distributions of weights
(a)–(d), the number of steps performed by algorithm Nashify() over the number
of users (#steps/n) as a function of the sum of weights of all users W . For each
instance we considered both random and shortest path initial allocation.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(a) (b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(c) (d)

Fig. 2. Experimental results for Network 1

Observe that the shortest path initial allocation significantly outperforms any
random initial allocation, no matter what networks or distributions of weights
are considered. In particular, the shortest path initial allocation appears to be
a PNE for sparse (Networks 1 and 2), grid (Network 4) and tree-like (Network
5) networks, while for the dense network (Network 3) the number of steps over
the number of users seems to be bounded by a small constant.

212 P.N. Panagopoulou and P.G. Spirakis

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(a) (b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

10

20

30

40

50

60

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
5 log(W)

(c) (d)

Fig. 3. Experimental results for Network 2

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(a) (b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
n log(W)

(c) (d)

Fig. 4. Experimental results for Network 3

Efficient Convergence to Pure Nash Equilibria 213

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(a) (b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
n log(W)

(c) (d)

Fig. 5. Experimental results for Network 4

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

(a) (b)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
log(W)

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

sum of weights W (logarithmic scale)

#steps / n (initial allocation is random)
#steps / n (initial allocation is shortest path)
n log(W)

(c) (d)

Fig. 6. Experimental results for Network 5

214 P.N. Panagopoulou and P.G. Spirakis

On the other hand, the behavior of the algorithm when starting with an
arbitrary allocation is sensibly worse. First note that, in this case, the fluctu-
ations observed at the plots are due to the randomization of the initial allo-
cation. On the average however we can make safe conclusions as regards the
way #steps/n increases as a function of W . For the distributions of weights
(a)–(c) it is clear that the number of steps over the number of users is asymp-
totically upper bounded by the logarithm of the sum of all weights, implying
that #steps = O(n · log(W)). Unfortunately, the same does not seem to hold for
randomly selected weights (distribution (d)). In this case however, as Figs. 2–
6(d) show, n log(W) seems to be a good asymptotic upper bound for #steps/n,
suggesting that #steps = O(n2 · log(W)).

Note that, for all networks, the maximum number of steps over the number
of users occurs for the random distribution of weights. Also observe that, for
the same value of the sum of weights W , the number of steps is dramatically
smaller when there are only 2 distinct weights (distributions (a)–(c)). Hence we
conjecture that the complexity of the algorithm does actually depend not only
on the sum of weights, but also on the number of distinct weights of the input.

Also note that the results shown in Figs. 2 and 3 imply that, when starting
with an arbitrary allocation, the number of steps increases as a linear function
of the size of the network. Since the number of s − t paths in Network 2 is
exponential in comparison to that of Network 1, we would expect a significant
increment in the number of steps performed by the algorithm. Figures 2 and 3
however show that this is not the case. Instead, the number of steps required for
Network 2 are at most 5 times the number of steps required for Network 1.

Summarizing our results, we conclude that (i) a shortest path initial alloca-
tion is a few greedy selfish steps far from a PNE, amplifying Conjecture 1, while
(ii) an arbitrary initial allocation does not assure a similarly fast convergence to
a PNE, however Conjecture 1 seems to be valid for this case as well, (iii) the size
of the network does not affect significantly the time complexity of the algorithm,
and (iv) the worst-case input for an arbitrary initial allocation occurs when all
users’ weights are distinct and some of them are exponential.

References

1. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equi-
libria. Proc. of the 36th ACM Symp. on Theory of Computing (STOC 04), 2004.

2. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. 31st Inter-
national Colloquium on Automata, Languages and Programming (ICALP’04), pp.
593–605, 2004.

3. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
Structure and Complexity of Nash Equilibria for a Selfish Routing Game. Proc.
of the 29th International Colloquium on Automata, Languages and Programming
(ICALP 02), Springer-Verlag, 2002, pp. 123–134.

4. Mehlhorn, K., Näher, S.: LEDA – A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

Efficient Convergence to Pure Nash Equilibria 215

5. Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and
Economic Behavior 13 (1996), 111–124.

6. Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior,
14:124–143, 1996.

7. Nash, J. F.: Equilibrium Points in N -person Games. Proc. of National Academy of
Sciences, Vol. 36, pp. 48–49, 1950.

8. Rosenthal, R. W.: A Class of Games Poseessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory 2, pp. 65–67, 1973.

	Introduction
	Definitions and Notation
	The Problem
	The Algorithm
	The Case of Exponential Delay Functions
	Experimental Evaluation
	Experimental Setup
	Results and Conclusions

