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Abstract. We implement the approximation algorithm for the multi-
cast congestion problem in communication networks in [14] based on the
fast approximation algorithm for packing problems in [13]. We use an
approximate minimum Steiner tree solver as an oracle in our implemen-
tation. Furthermore, we design some heuristics for our implementation
such that both the quality of solution and the running time are improved
significantly, while the correctness of the solution is preserved. We also
present brief analysis of these heuristics. Numerical results are reported
for large scale instances. We show that our implementation results are
much better than the results of a theoretically good algorithm in [10].

1 Introduction

We study the multicast congestion problem in communication networks. In a
given communication network represented by an undirected graph G = (V,E)
with |V | = n and |E| = m, each vertex v represents a processor, which is able to
receive, duplicate and send data packets. A multicast request is a set S ⊆ V of
vertices (called terminals) which are to be connected such that they can receive
copies of the same data packet from the source simultaneously. To fulfil a request
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S, one subtree T in G is to be generated for spanning S, called an S-tree. In the
multicast congestion problem in communication networks we are given a graph
G and a set of multicast requests S1, . . . , Sk ⊆ V . A feasible solution is a set of
k trees T1, . . . , Tk, where Tq connects the terminals in Sq, called an Sq-tree. The
congestion of an edge in a solution is the number of Sq-trees which use the edge.
The goal of the problem is to find a solution of Sq-trees for all q = 1, . . . , k that
minimizes the maximum edge congestion.

If each request consists of only two terminals, the multicast congestion prob-
lem is reduced to the standard routing problem of finding integral paths with
minimum congestion. In fact it is a generalization of the problem of finding
edge disjoint shortest paths for source and destination pairs. This problem is
NP-hard [15] and hence the multicast congestion problem is also NP-hard.

Another related problem is the Steiner tree problem in graphs. Given a graph
G = (V,E), a set S ⊆ V of terminals and a non-negative length function (cost
or weight) on the edges, a Steiner tree T is a subtree spanning all vertices in S.
The vertices of T may be in V \S. The goal of the Steiner tree problem in graphs
is to find a minimum Steiner tree, i.e., a Steiner tree with minimum total edge
length. Compared with the multicast congestion problem, in the Steiner tree
problem there is only a single multicast and the objective function is different.
However, the Steiner tree problem is proved APX -hard [15, 1, 5]:

Proposition 1. The Steiner tree problem in graphs is NP-hard, even for un-
weighted graphs. Furthermore, there exists a constant c̄ > 1 such that there is no
polynomial-time approximation algorithm for the Steiner tree problem in graphs
with an approximation ratio less than c̄, unless P = NP.

The best known lower bound is c̄ = 96/95 ≈ 1.0105 [8].
Since the multicast congestion problem is NP-hard, interests turn to approx-

imation algorithms. In [20] a routing problem in the design of a certain class of
VLSI circuits was studied as a special case of the multicast congestion problem.
The goal is to reduce the maximum edge congestion of a two-dimensional rec-
tilinear lattice with a specific set of a polynomial number of trees. By solving
the relaxation of the integer linear program and applying randomized rounding,
a randomized algorithm was proposed such that the congestion is bounded by
OPT + O(

√
OPT ln(n2/ε)) with probability 1 − ε when OPT is sufficiently

large, where OPT is the optimal value. Vempala and Vöcking [22] proposed
an approximation algorithm for the multicast congestion problem. They applied
a separation oracle and decomposed the fractional solution for each multicast
into a set of paths. An O(ln n)-approximate solution can be delivered in time
O(n6α2+n7α) by their algorithm, where α involves the number k and some other
logarithmic factors. Carr and Vempala [6] proposed a randomized asymptotic
algorithm for the multicast congestion problem with a constant approximation
ratio. They analyzed the solution to the linear programming (LP) relaxation by
the ellipsoid method, and showed that it is a convex combination of Si-trees. By
picking a tree with probability equal to its convex multiplier, they obtained a
solution with congestions bounded by 2 exp(1)c · OPT + O(ln n) with probabil-
ity at least 1 − 1/n, where c > 1 is the approximation ratio of the approximate
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minimum Steiner tree solver. The algorithm needs Õ(n7) time including k as a
multiplication factor. Without awareness of above theoretical results, Chen et
al. [7] studied this problem from practical point of view, which was called mul-
ticast packing problem in their paper. They showed some lower bounds for the
problem and implemented some instances with small sizes by the branch-and-cut
algorithm. More works on the multicast packing problem can be found in [18].

Baltz and Srivastav [3] studied the multicast congestion problem and pro-
posed a formulation based on the ideas of Klein et al. [16] for the concurrent
multicommodity flow problem with uniform capacities. The integer linear pro-
gram has an exponential number of variables and they constructed a combinato-
rial LP-algorithm to obtain a polynomial number of Sq-trees for each multicast
request Sq. Finally a randomized rounding technique in [19] was applied. The
solution of their algorithm is bounded by

⎧
⎨

⎩

(1 + ε)c · OPT + (1 + ε)(exp(1) − 1)
√

c · OPT ln m, if c · OPT ≥ ln m,

(1 + ε)c · OPT +
(1 + ε) exp(1) ln m

1 + ln(lnm/(c · OPT ))
, otherwise.

(1)

In the case c · OPT ≥ ln m the bound is in fact (1 + ε) exp(1)c · OPT and oth-
erwise it is (1+ ε)c ·OPT +O(ln m). The running time is O(βnk3ε−9 ln3(m/ε) ·
min{ln m, ln k}), where β is the running time of the approximate minimum
Steiner tree solver. A randomized asymptotic approximation algorithm for the
multicast congestion problem was presented in [14]. They applied the fast ap-
proximation algorithm for packing problems in [13] to solve the LP relaxation
of the integer linear program in [3]. They showed that the block problem is the
Steiner tree problem. The solution hence is bounded by (1) and the running time
is improved to O(m(ln m + ε−2 ln ε−1)(kβ + m ln ln(mε−1))). Baltz and Srivas-
tav [4] further proposed an approximation algorithm for the multicast congestion
problem based on the algorithm for packing problems in [10], which has the best
known complexity O(k(m + β)ε−2 ln k ln m). They also conducted some imple-
mentation with typical instances to explore the behaviour of the algorithms. It
was reported that the algorithm in [10] is very impractical. In addition, they
presented a heuristic based on an online algorithm in [2], which can find good
solutions for their test instances within a few iterations.

In this paper we implement the algorithm in [14] with large scale instances.
We design some heuristics to speed up the computation and to improve the
quality of solution delivered in our implementation. We also present brief analysis
of the heuristics. The numerical results show that the algorithm for packing
problems [13] is reliable and practical. We also compare our results with those by
the algorithm in [10] and the heuristic in [4]. Because other algorithms mentioned
above are very impractical, we do not consider them for implementation.

The paper is organized as follows: In Section 2 the approximation algorithm
for the multicast congestion problem in [14] is briefly reviewed. We analyze
the technique to overcome the hardness of exponential number of variables in
Section 3. Our heuristics are presented in Section 4. Finally, numerical results
are reported in Section 5 with comparison with other approaches.
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2 Approximation Algorithm

Let Tq be the set of all Sq-trees for any q ∈ {1, . . . , k}. Here the cardinality of Tq

may be exponentially large. Define by xq(T ) a variable indicating whether the
tree T ∈ Tq is chosen in a solution for the multicast request Sq. Based on the
idea in [3, 4], the following integer linear program can be formulated:

min λ

s.t.
∑k

q=1

∑
T∈Tq & ei∈T xq(T ) ≤ λ, for all i ∈ {1, . . . , m};∑

T∈Tq
xq(T ) = 1, for all q ∈ {1, . . . , k};

xq(T ) ∈ {0, 1}, for all q and all T ∈ Tq,

(2)

where λ is the maximum congestion. The first set of constraints show that the
congestion on any edge is bounded by λ, and the second set of constraints indicate
that exact one Steiner tree is chosen for one request. As usual, the strategy is
to first solve the LP relaxation of (2) and then round the fractional solution to
a feasible solution.

We define a vector xq = (xq(T1), xq(T2), . . .)T for all T1, T2, . . . ∈ Tq repre-
senting the vector of indicator variables corresponding to all Steiner trees for
the q-th request. Denote by a vector x = (xT

1 , . . . , xT
k )T the vector of all in-

dicator variables. Furthermore, a vector function f(x) = (f1(x), . . . , fm(x))T

is used, where fi(x) =
∑k

q=1

∑
T∈Tq & ei∈T xq(T ) represents the congestion on

edge ei, for i ∈ {1, . . . , m}. In addition, we define by B = B1 × . . . × Bk where
Bq = {(xq(T ))T |T ∈ Tq,

∑
T∈Tq

xq(T ) = 1, xq(T ) ≥ 0}, for q ∈ {1, . . . , k}. It
is obvious that xq ∈ Bq and x ∈ B. In this way the LP relaxation of (2) is
formulated as the following packing problem (the linear case of the min-max re-
source sharing problems [12, 24, 13]): min{λ|f(x) ≤ λ, x ∈ B}. Thus we are able
to use the approximation algorithm for packing problems [13] to solve the LP
relaxation of (2).

The computational bottleneck lies on the exponential number of variables
xq(T ) in (2). The algorithm for packing problems in [13] is employed in [14]
with a column generation technique implicitly applied. We briefly describe the
algorithm as follows. The algorithm is an iterative method. In each iteration
(coordination step) there are three steps. In the first step a price vector w is
calculated according to current iterate x. Then an approximate block solver is
called as an oracle to generate an approximate solution x̂ corresponding to the
price vector w in the second step. In the third step the iterate is moved to
(1 − τ)x + τ x̂ with an appropriate step length τ ∈ (0, 1). The coordination step
stops when any one of two stopping rules holds with respect to an relative error
tolerance σ, which indicates that the resulting iterate is a c(1 + σ)-approximate
solution. Scaling phase strategy is applied to reduce the coordination complexity.
In the first phase σ = 1 is set. When a coordination step stops, current phase
finishes and σ is halved to start a new phase, until σ ≤ ε. Finally the delivered
solution fulfils λ(x) ≤ c(1 + ε)λ∗, where λ∗ is the optimum value of the LP
relaxation of (2) (See [13, 14]).

ulticast ongestion roblemCM P



156 Q. Lu and H. Zhang

The block problem is exactly the Steiner tree problem in graphs and the
edge length function is the price vector w [14]. So k minimum Steiner trees
are computed corresponding to the k requests S1, . . . , Sk with respect to the
length function in current iteration. In the iterative procedure lengths on the
edges with large congestions increase while edges with small congestions have
decreasing lengths. In this way the edges with large congestions are punished
and have low probability to be selected in the generated Steiner trees. The
best known algorithm for the Steiner tree problem has an approximation ratio
c = 1 + (ln 3)/2 ≈ 1.550 [21] but the complexity is large. So in our implemen-
tation, we use a 2-approximate minimum Steiner tree solver (MST S) as the
block solver, and its time complexity is O(m + n ln n) [17, 9]. We call this al-
gorithm MC and its details can be found in [13, 14]. Then the following result
holds [13, 14]:

Theorem 1. For a given relative accuracy ε ∈ (0, 1), Algorithm MC delivers a
solution x such that λ(x) ≤ c(1 + ε)λ∗ in N = O(m(ln m + ε−2 ln ε−1)) itera-
tions. The overall complexity of Algorithm MC is O(m(ln m + ε−2 ln ε−1)(kβ +
m ln ln(mε−1))), where β is the complexity of the approximate minimum Steiner
tree solver.

3 The Number of Variables

In the LP relaxation of (2), there can be an exponential number of variables.
However, with the algorithm in [13, 14], a column generation technique is auto-
matically applied and totally the trees generated by the algorithm is a polynomial
size subset of T = ∪k

q=1Tq.
If a Steiner tree Tqj

∈ Tq is chosen for a request Sq, the corresponding indica-
tor variable is set to xqj

= 1. In the fractional sense, it represents the probability
to choose the corresponding Steiner tree Tqj

. For any tree Tqj
∈ Tq for a request

Sq, if it is not generated by MST S in any iteration of Algorithm MC, then
the corresponding indicator variable xqj

= 0, which shows that it will never be
chosen. Because in each iteration, there are k Steiner trees generated for the k
requests, respectively, we conclude that there are only polynomially many trees
generated in Algorithm MC according to Theorem 1:

Theorem 2. When Algorithm MC halts, there are only O(km(ln m+ε−2 ln ε−1))
non-zero indicator variables of the vector x and only the same number of Steiner
trees generated.

In our implementation, we maintain a vector x with a size k(N + 1), where
N is the actual number of iterations. We also maintain a set T of Steiner trees
generated in the algorithm. Notice that here T is not the set of all feasible Steiner
trees. At the beginning the set T is empty and all components of x are zeros. In
the initialization step, k Steiner trees are generated. Then the first k components
of x are all ones and the corresponding generated k Steiner trees T1, . . . , Tk are
included in T . In the j-th iteration, for the q-th request a Steiner tree Tjk+q is
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generated. No matter whether it is identical to any previously generated tree,
we just consider it as a new one and include it in the tree set T . Meanwhile, we
set the corresponding components x̂jk+q = 1. Therefore after the j-th iteration
there are totally (j + 1)k nonzero indicator variables (nonzero probability to
select the corresponding trees in T ). Finally, there are |T | = (N + 1)k non-zero
indicator variables.

However, in practice it is not easy to estimate the exact value of N in ad-
vance as there is only an upper bound O(m(ln m + ε−2 ln ε−1)) for N . In our
implementation, we set N = 100. If it is insufficient we will double it, until the
value of N suffices. In fact according to our implementation results the setting
N = 100 is enough as for all of our test instances there are only O(k) Steiner
trees generated (See Section 5).

4 Heuristics

4.1 Choose the Step Length

In Algorithm MC the step length τ is set as tθν/(2m(wT f(x) + wT f(x̂))) as
in [13, 14], where t and θ are parameters for computing the price vector, and
ν = (wT f(x) − wT f(x̂))/(wT f(x) + wT f(x̂)) is a parameter for stopping rules.
In the last coordination steps of MC, we have that t = O(ε) and ν = O(ε)
according to the scaling phase and the stopping rules, respectively. Assuming
that θ/(wT f +wT f̂) = O(1), we notice that τ = O(ε2/m) is very small. It means
that the contribution of the block solution is very tiny and the iterate moves to
the desired neighbourhood of the optimum very slowly, which results in a large
number of iterations (though the bound in Theorem 1 still holds). In fact in our
implementation we find that even at the beginning of the iterative procedure
the value of τ defined in [13, 14] is too small. In [11, 13] it is mentioned that any
τ ∈ (0, 1) can be employed as the step length. We test several feasible settings
of τ such as τ = 1− tθν/(2m(wT f + wT f̂)), τ = 1− ν and τ = ν. Experimental
results show that τ = ν is the best among them. With this heuristic, the number
of iterations is reduced significantly (see Section 5).

4.2 Remove the Scaling Phase

In our implementation we set ε = 10−5. In this way we are able to estimate the
number of scaling phases Ns = − log ε = 5 log 10 ≈ 16.61. Therefore in the total
computation there should be 17 scaling phases. In fact we find that in many
cases in our implementation there is only one iteration in each scaling phase.
Thus, the number of scaling phases dominates the overall number of iterations
and there are only O(1) iterations in a scaling phase.

We notice that in [13] the algorithm without scaling phase is also mentioned
and the corresponding coordination complexity is O(mc2(ln m+ε−2 +ε−3 ln c)).
In our implementation c = 2 is a constant so the complexity does not increase
much. In practice with this strategy the algorithm could run faster, especially
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when there are only very few iterations in each scaling phase. Therefore we use
this approach and the number of iterations is reduced.

4.3 Add Only One Steiner Tree in Each Iteration

Algorithm MC calls the block solver MST S k times independently for the k
requests in each iteration. We now consider Example 1 which leads to hard-
ness for finding an optimum solution. The instance is as follows: In the graph
G, |V | = 4 and |E| = 5. The edges are (1, 2), (1, 3), (2, 3), (1, 4) and (2, 4)
(see Figure 1(a)). There are 3 identical requests Sq = {1, 2} for q = 1, 2, 3. In
general we can also study the graphs with |V | = p, |E| = 2p − 3, with edge
set E = {(1, 2), (1, i), (i, 2)|i = 3, . . . , p} and identical requests Sq = {1, 2} for
q = 1, . . . , p − 1 for p ∈ N and p ≥ 4.

In the initialization step of Algorithm MC, each edge is assigned an identical
length 1/5. For all requests, the minimum Steiner trees Tq, q = 1, 2, 3 are all the
path containing only edge (1, 2), with a total length 1/5. After T1 is generated for
the first request S1, Algorithm MC is not aware of the change of the congestion
on edge (1, 2), and still assign the identical trees T2 and T3 to requests S2 and
S3. After the initialization congestions of edges are all zero except for edge (1, 2),
which has a congestion 3 (see Figure 1(b)). In the first iteration, the edge lengths
changes and the length on edge (1, 2) is the maximum, and other edges have very
small lengths. Therefore Algorithm MC will choose the path {(1, 3), (3, 2)} as
T4 for S1. With the same arguments, other requests are also assigned the path
{(1, 3), (3, 2)} as their corresponding minimum Steiner trees (see Figure 1(c)). In
the second iteration all requests are assigned the path {(1, 4), (4, 1)} (see Figure
1(d)) and in the third iteration the solution returns back to the case in Figure
1(b). This procedure continues and in each iteration only one path is used for all
requests, which leads to a wrong solution with always a maximum congestion 3.
It is also verified by our implementation.

This problem does not result from Algorithm MC itself but from the data
structure (the indices of the vertices and edges). An intuitive approach is to
re-index the nodes (and hence edges) after each Steiner tree is generated. How-
ever, this approach causes large computational cost of re-indexing. The strategy
we apply here is to establish a permutation of the requests. In each iteration
only one request is chosen according to the permutation, and a Steiner tree is
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generated by MST S for the chosen request. This method is applied in [23] to
solve the packing problems with block structured variables but with a standard
(not weak) approximate block solver. The bound on the number of iterations
is O(k ln m(ln min{k,m} + ε−2)), where k is the number of blocks of variables.
There is also a randomized algorithm for such problems [11] with a number of
iterations bounded by O(k ln m(ln k + ε−2)). In our problem there are also k
blocks of indicator variables corresponding to the k requests. But there are only
weak block solvers with the approximation ratio c > 1. So we apply this method
as a heuristic in our implementation. Furthermore, in our implementation we
find it is not necessary to construct and maintain the permutation. We can just
choose the requests according to their indices. In this way the optimum solution
can be attained in only 3 iterations for Example 1 such that the three requests
are realized by the three disjoint paths between vertex 1 and 2.

It is interesting that when this heuristic is employed, not only the quality of
the solution but also the running time are improved. In fact for many instances
with symmetric topology structure, such a problem due to data structure can
happen without our heuristic or the re-indexing approach.

4.4 Punish the Edges with Large Congestions

We use a 2-approximate minimum Steiner tree solver (c = 2) here as the block
solver in our implementation. We notice that with the above heuristics we can
only obtain a solution bounded by (1) as indicated in our implementation results
(see Section 5). In fact our implementation shows that as soon as the solution
fulfils (1) for c = 2, the algorithm halts immediately. In order to obtain a better
approximate solution still with MST S, we could modify the stopping rules to
force the algorithm to continue running with more iterations. However, here we
use another heuristic without changing the stopping rules in order to avoid more
running time.

The price vector is used as edge length in our algorithm for the Steiner tree
problem. It is obvious that a large congestion leads to a large length on the edge.
Thus we can add extra punishment to edges with large congestions to balance
the edge congestions over the whole graph. We apply the following strategy:

First we define an edge ei high-congested if its congestion fi fulfils the follow-
ing inequality:

λ − fi ≤ r(λ − λ̂). (3)

Here λ is the maximum congestion in current iteration, λ̂ is the average conges-
tion defined as the sum of congestions over all edges divided by the number of
edges with nonzero congestions, and r is a ratio depending on the quality of the
current solution defined as follows:

r =
√

1 − (λ0 − λ)2/λ2
0, (4)

where λ0 ≥ λ is the maximum congestion of the initial solution. According to
(4), r ∈ (0, 1]. In addition, (4) is an ellipse function. At the beginning λ ≈ λ0

so r ≈ 1. With the maximum congestion being reduced, the value of r also
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decreases. Furthermore, according to the property of the ellipse function, at the
beginning of the iterative procedure the value of r decreases slowly. When the
congestions are well distributed, r reduces quickly. This formulation guarantees
that at the beginning of the iterative procedure there is a large portion of high-
congested edges while later there is only a small portion.

Next we re-assign length function to all edges in the graph. For any edge not
high-congested, we keep its length as computed by the method in [13, 14]. For a
high-congested edge, we set its length as its current congestion. Afterwards we
normalize all edge lengths such that the sum of lengths of all edges is exactly
one. Our implementation shows that this technique can not only improve the
quality of solution but also speed up the convergence (with less iterations).

5 Experimental Results

Our test instances are two-dimensional rectilinear lattices (grid graphs with cer-
tain rectangular holes). These instances typically arise in VLSI logic chip design
problems and the holes represent big arrays on the chips. These instances are re-
garded hard for path- or tree-packing problems. The instances have the following
sizes:

Example 1. n = 2079 and m = 4059; k = 50 to 2000.
Example 2. n = 500 and m = 940; k = 50 to 300.
Example 3. n = 4604 and m = 9058; k = 50 to 500.
Example 4. n = 1277 and m = 2464; k = 50 to 500.

We first demonstrate the influence of the heuristics mentioned in Section 4
by a hard instance. The instance belongs to Instance 3 with 4604 vertices, 9058
edges and 100 requests. The sizes of requests varies and the smallest request has
5 vertices. We test our algorithm without or with heuristics and the results are
shown in Table 1.

We refer Algorithm 1 the original Algorithm MC without any heuristics.
Algorithm 2 is referred to Algorithm MC with the heuristic to add only one
Steiner tree in each iteration. For Algorithm 3, we refer the algorithm similar to
Algorithm 2 but with step length τ = ν. Algorithm 4 is similar to Algorithm 3
but with extra punishment to high-congested edges. It is worth noting that in
Algorithm 1, the block solver MST S is called k times in each iteration, while

Table 1. Numerical results of Algorithm MC without and with heuristics

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Initial Congestion 17 17 17 17

Final Congestion 17 13 6 4

Number of Calls − 44 85 90
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Table 2. Numerical results of Instance 1 compared with Garg-Könemann’s algorithm

and Baltz-Srivastav’s heuristic

# req.(# term.) G-K B-S Alg. 3 Alg. 4

50(4) 2.5(5000) 2(50) 4(111) 2(67)

100(4) 4.4(10000) 3(100) 7(207) 3(180)

150(4) 6.1(15000) 4(300) 9(314) 5(131)

200(4) 8.0(20000) 5(400) 11(594) 6(260)

300(4) 11.5(30000) 7(900) 15(826) 8(492)

500(4) 19.9(50000) 12(1000) 23(1389) 13(977)

1000(4) 36.5(100000) 21(69000) 48(2786) 24(2955)

2000(4) 76.1(200000) 44(4000) 96(5563) 54(3878)

500(≥ 2) 69.1(50000) 32(4500) 39(1381) 37(501)

1000(≥ 2) 100.5(100000) 65(3000) 78(2933) 72(1004)

in Algorithm 2, 3 and 4 MST S is called only once in each iteration. In order
to compare the running time fairly, we count the number of calls to MST S as
the measurement of running time. In fact according to our implementation, the
running time of MST S dominates the overall running time. From Table 1 it is
obvious that the heuristics improve the quality of solution much. Since the value
of τ is too small in Algorithm 1, the iterate does not move after long time and
we manually terminate the program.

In [4] Instance 1 was implemented to test their heuristic based on an online
algorithm in [2] and a well-known approximation algorithm for packing problems
in [10] based on an approximation algorithm for the fractional multicommodity
flow problem. Here, we also use the same instances to test our Algorithm 3 and
4. The results are shown in Table 2. In the first column of Table 2 the num-
ber of requests and the number of terminals per request are given. The solution
delivered by the algorithms and heuristics are presented in other columns, to-
gether with the number of calls to MST S in brackets. The results of Garg and
Könemann’s algorithm are only for the LP relaxation.

It is clear that Algorithm 4 is superior to Algorithm 3 in the examples of
regular requests (with 4 terminals per request). Furthermore, it is worth noting
that our Algorithm 4 delivers better solutions than the algorithm by Garg and
Könemann [10] with much less number of calls to MST S. In fact the fractional
solutions of Algorithm 3 are also better than those of the algorithm by Garg
and Könemann. Our results are not as good as those of the heuristic proposed
in [4] for these instances. However, there is no performance guarantee of their
heuristic, while our solutions are always bounded by (1). A possible reason of this
case is that we use a 2-approximate block solver, which leads to a low accuracy.
We believe that a better approximate minimum Steiner tree solver and some
more strict stopping rules can result in better performance of our algorithm.

We also test our Algorithm 4 by Instances 2, 3 and 4, which are not im-
plemented in [4]. The results are listed in Table 3. Our algorithm can always
generate satisfactory solutions for these hard instances in short running times.

ulticast ongestion roblemCM P



162 Q. Lu and H. Zhang

Table 3. Numerical results of Instance 2, 3 and 4

Inst. # req.(# term.) Alg. 4 Inst. # req.(# term.) Alg. 4

2 50(≥ 10) 7(37) 2 150(≥ 30) 25(116)

2 50(≥ 5) 6(41) 2 200(≥ 10) 34(404)

2 100(≥ 5) 12(83) 2 200(≥ 30) 32(148)

2 100(≥ 10) 14(77) 2 300(≥ 10) 38(559)

2 150(≥ 10) 19(131) 2 300(≥ 30) 47(231)

3 50(≥ 5) 2(146) 3 200(≥ 20) 13(320)

3 50(≥ 20) 4(105) 3 300(≥ 5) 8(565)

3 100(≥ 5) 4(90) 3 300(≥ 20) 19(285)

3 100(≥ 20) 7(186) 3 500(≥ 5) 13(962)

3 200(≥ 5) 6(210) 3 500(≥ 20) 30(483)

4 50(≥ 5) 3(103) 4 200(≥ 20) 24(165)

4 50(≥ 20) 7(36) 4 300(≥ 5) 14(560)

4 100(≥ 5) 6(83) 4 300(≥ 20) 34(280)

4 100(≥ 20) 13(86) 4 500(≥ 5) 24(475)

4 200(≥ 5) 10(173) 4 500(≥ 20) 56(390)

For any request of all these instances, the corresponding MST S is called at
most 3 times.

6 Conclusion

We have implemented the approximation algorithm for the multicast congestion
problem in communication networks in [14] based on [13] with some heuristics
to improve the quality of solution and reduce the running time. The numerical
results for hard instances are reported and are compared with the results of
the approximation algorithm in [10] and a heuristic in [4]. It shows that the
algorithm in [13] is practical and efficient for packing problems with a provably
good approximation ratio.

There could be some interesting techniques to further improve the exper-
imental performance of the algorithm. A possible method is to use a better
approximate minimum Steiner tree solver (e.g. the algorithm in [21]), though
the running time will be significantly increased. Another technique is to use
the line search for the step length to reduce the number of iterations. However,
the running time in each iteration increases so the improvement of the overall
running time could be not significant. More heuristics and techniques are to be
designed and implemented in our further work.
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