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The theories of algorithms and games were arguably born within a year of each
other, in the wake of two quite distinct breakthroughs by John von Neumann, in
the former case to investigate the great opportunities – as well as the ever mys-
terious obstacles – in attacking problems by computers, in the latter to model
and study rational selfish behavior in the context of interaction, competition and
cooperation. For more than half a century the two fields advanced as gloriously
as they did separately. There was, of course, a tradition of computational consid-
erations in equilibria initiated by Scarf [13], work on computing Nash and other
equilibria [6, 7], and reciprocal isolated works by algorithms researchers [8], as
well as two important points of contact between the two fields propos the issues
of repeated games and bounded rationality [15] and learning in games [2]. But
the current intensive interaction and cross-fertilization between the two disci-
plines, and the creation of a solid and growing body of work at their interface,
must be seen as a direct consequence of the Internet.

By enabling rapid, well-informed interactions between selfish agents (as well
as by being itself the result of such interactions), and by creating new kinds
of markets (besides being one itself), the Internet challenged economists, and
especially game theorists, in new ways. At the other bank, computer scientists
were faced for the first time with a mysterious artifact that was not designed,
but had emerged in complex, unanticipated ways, and had to be approached
with the same puzzled humility with which other sciences approach the cell,
the universe, the brain, the market. Many of us turned to Game Theory for
enlightenment.

The new era of research in the interface between Algorithms and Game The-
ory is rich, active, exciting, and fantastically diverse. Still, one can discern in it
three important research directions: Algorithmic mechanism design, the price of
anarchy, and algorithms for equilibria.

If mainstream Game Theory models rational behavior in competitive set-
tings, Mechanism Design (or Reverse Game Theory, as it is sometimes called)
seeks to create games (auctions, for example) in which selfish players will be-
have in ways conforming to the designers objectives. This modern but already
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mathematically well-developed branch of Game Theory received a shot in the
arm by the sudden influx of computational ideas, starting with the seminal pa-
per [9]. Computational Mechanism Design is a compelling research area for both
sides of the fence: Several important classical existence theorems in Mechanism
Design create games that are very complex, and can be informed and clarified
by our fields algorithmic and complexity-theoretic ideas; it presents a new genre
of interesting algorithmic problems; and the Internet is an attractive theater for
incentive-based design, including auction design.

Traditionally, distributed systems are designed centrally, presumably to op-
timize the sum total of the users objectives. The Internet exemplified another
possibility: A distributed system can also be designed by the interaction of its
users, each seeking to optimize his/her own objective. Selfish design has advan-
tages of architectural and political nature, while central design obviously results
in better overall performance. The question is, how much better? The price of
anarchy is precisely the ratio of the two. In game-theoretic terms, it is the ratio
of the sum of player payoffs in the worst (or best) equilibrium, divided by the
payoff sum of the strategy profile that maximizes this sum. This line of investiga-
tion was initiated in [5] and continued by [11] and many others. That economists
and game theorists had not been looking at this issue is surprising but not in-
explicable: In Economics central design is not an option; in Computer Science
it has been the default, a golden standard that invites comparisons. And com-
puter scientists have always thought in terms of ratios (in contrast, economists
favor the difference or “regret”): The approximation ratio of a hard optimization
problem [14] can be thought of as the price of complexity; the competitive ratio
in an on-line problem [4] is the price of ignorance, of lack of clairvoyance; in this
sense, the price of anarchy had been long in coming.

This sudden brush with Game Theory made computer scientists aware of
an open algorithmic problem: Is there a polynomial-time algorithm for finding a
mixed Nash equilibrium in a given game? Arguably, and together with factoring,
this is the most fundamental open problem in the boundary of P and NP: Even
the 2-player case is open – we recently learned [12] of certain exponential ex-
amples to the pivoting algorithm of Lemke and Howson [6]. Even though some
game theorists are still mystified by our fields interest efficient algorithms for
finding equilibria (a concept that is not explicitly computational), many more
are starting to understand that the algorithmic issue touches on the founda-
tions of Game Theory: An intractable equilibrium concept is a poor model and
predictor of player behavior. In the words of Kamal Jain “If your PC cannot
find it, then neither can the market”. Research in this area has been moving
towards games with many players [3, 1]), necessarily under some succinct repre-
sentation of the utilities (otherwise the input would need to be astronomically
large), recently culminating in a polynomial-time algorithm for computing cor-
related equilibria (a generalization of Nash equilibrium) in a very broad class of
multiplayer games [10].
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