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Abstract. Context-aware systems are systems that use context information to
adapt their behavior or to customize the content they provide. Prior work in the
area of context-aware systems focused on applications where context sources,
Context-Aware Services (CASs), and users are in each other’s spatial proxim-
ity. In such systems no scalability problem exists. However, other relevant CASs
are subject to strong scalability problems due to the number of users, the geo-
graphical distribution of the context sources, the users, and the CAS as well as
the number of organizations that participate in the provision of the context-aware
system.

In this paper, we classify CASs according to their scalability needs and review
context provision and service provision infrastructures with regard to their scal-
ability. For building large-scale context-aware systems it is not sufficient to Zuse
large-scale service provision and context provision infrastructures. Additionally
an integration layer is needed that makes the heterogeneous access interfaces of
the context provision infrastructures transparent for the CASs. We outline our
proposal for such an integration layer and describe how it can be combined with
an infrastructure that allows handhelds themselves to gather context information
in their immediate vicinity via wireless technologies.

1 Introduction

Context-aware systems are systems that use context information to adapt their behavior
or to customize the content they provide. In these systems three main types of entities
can be distinguished: Context Sources (CS), Context-Aware Services (CASs) and users.

Early research in ubiquitous computing focused on applications where all entities
involved in a user session are located in each other’s spatial proximity like figure 1(a)
illustrates. In such a setting there is no scalability problem. [1] coined the term ”local-
ized scalability” for this principle. Localized scalability is reached ”by severely reduc-
ing interactions between distant entities” [1] or by locally restricting the distribution of
information [2].

However, there are applications where the context sources, the CASs and the users
are not colocated. Thus, interactions between distant entities are needed. In these situa-
tions the question arises how global scalability in context-aware systems can be reached.
The key to this lies in replicating and distributing CASs as well as context information.
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The paper is structured as follows: In section 2 we argue under which conditions a
need for global scalability exists and give examples for applications. Section 3 reviews
approaches for context provision as well as for service provision. In section 4 we discuss
how the existing approaches can be combined and show which components are still
missing in order to build large-scale context-aware systems. We describe our proposals
for these components in section 4.1 and 4.2. In section 5 we outline directions for future
research.

2 From Local Towards Global Scalability

In this section we will define classes of CASs with different scalability needs and will
provide examples for these classes. To be able to discuss the scalability of the different
application classes we first need to define what scalability is. According to [3] scale
consists of a numerical, a geographical, and an administrative dimension. The numeri-
cal dimension refers to the number of users, deployed objects like e.g. context sources
and services in a system. The geographical dimension means the distance between the
farthest nodes, while the administrative dimension consists of the number of organiza-
tions that execute control over parts of the system. A large administrative dimension
in general leads to heterogeneity. The various organizations are likely to use different
hardware, software, protocols, and information models. In such an environment service
interoperability becomes a problem. The interoperability problem is classically divided
into a signature level, a protocol level, and a semantic level [4]. The syntax of the in-
terface of a service is described on the signature level. It includes in general the name
of any operation and the type and sequence of any parameter of the interface. On the
protocol level the relative order in which methods of a service are called is specified.
The problem of divergent understanding and interpretation is dealt with on the semantic
level. [3] defines a system to be scalable if users, objects and services can be added, if
it can be scattered over a larger area, and if the chain of value creation can be divided
among more organizations without the system ”suffering a noticeable loss of perfor-
mance or increase in administrative complexity.”

Locally scalable CASs (figure 1(a)): Most CASs that were built so far colocated the
CAS, the context sources, and the users (see e.g. [5] for a survey). Typical examples
are shopping and conference assistants. In these systems scalability is not an issue. All
ways between the entities are short. The number of context sources and users is low.
Moreover, the physical context sources were known when the CAS was developed.
Thus, the CASs as well as the context sources were designed to interoperate.

CASs with heightened scalability needs (figure 1(b)-(d)): Recently, some CASs have
been built where only two of the three types of entities are colocated and the third is far
away. For example, many health surveillance applications [6] assume that sensors are
attached to the body of persons with health problems. The gathered data is transmitted
via the mobile Internet to a central database where it is analyzed by a physician or by a
data-mining process that alerts a doctor if something is wrong (see figure 1(b)). Other
applications colocate the user and the CAS (figure 1(c)), but receive context information
from distant locations. An example are on-board navigation systems in cars that receive
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Fig. 1. Depending on the application context-aware services, context sources and users may be
colocated or far apart

information about traffic jams via radio technologies. Surveillance of remote areas with
the help of sensor networks is an application where in general the context sources and
the CAS are colocated. When something interesting happens the user that is far away is
informed (figure 1(d)). These types of CASs cause moderate scalability problems.

CASs with potentially global scalability needs (figure 1(e)): The largest scalability
problems arise when the context sources, the CASs, and the users are far apart from
each other. Examples are context-based push information services, contextualized yel-
low pages services, and server-based navigation applications. A context-based push
information services for example is a friend-finder (cp. [7]). A friend-finder constantly
tracks all members of a community within a large area. Whenever two members with
similar interests enter each others vicinity, they are informed if their current activity
does not forbid this (if e.g. one must not be disturbed because he is in a meeting). An-
other example is an application that reminds people to buy e.g. milk when they are
near a supermarket. Contextualized yellow pages services (cp. [7]) help people to find
nearby sights, restaurant, gas stations etc.. Scalability problems arise especially if dy-
namic properties of target objects (target context) and of objects between the user’s
current position and the target’s position (transition context) are included into the rec-
ommendations given to the user. For example, a tour guide might incorporate the current
waiting times at major sights into the proposed tour or a restaurant finder might suggest
only places that can be reached within 15 minutes and still have seats available. To de-
termine which restaurants are reachable within a certain time, the CAS finds out which
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bus stops are near the user and when the next bus will arrive including all known current
delays. If the user is within a car, the current traffic situation is taken into account. A
server-based navigation system keeps all maps on the server and calculates routes based
on the user’s position, the point he wants to reach and dynamic information like traffic
jams, weather condition, and road works.

The scalability problem of these applications is mainly caused by three properties of
the overall system: 1. The CAS can be invoked from within a very large area. 2. Many
persons might want to use the CAS. Thus, it must be ready to cope with a high workload.
Moreover, the context of a plethora of entities must be accessible for the CAS. 3. The
context sources will have different access interfaces in different regions and will be
operated by different organizations. For example, a navigation system that uses traffic
information for its recommendations will have to address that this information will be in
a different language and format in Germany and France. Standards can partly solve this
problem. However, many competing standards exist. For example, a traffic information
system in the USA will express distances in miles and feet, while in Europe kilometers
are used. For all these problems solutions must be found to allow for scalable context-
aware services.

After having outlined for which classes of CASs global scalability is needed, we
will review approaches for context provision and CAS provision with regard to their
suitability for building globally scalable context-aware systems.

3 Approaches for Context Provision and CAS Provision

In order to build globally scalable context-aware systems the context provision process
as well as the provision of the CAS must be scalable. We will address both subsystems
in turn.

3.1 Scalable Context Provision

Scalability research in ubiquitous computing so far has mainly focused on the question
how the context provision process can be made scalable. Figure 2 classifies the context
provision approaches.

Context Provision approaches can be divided intoinfrastructureless andinfrastructure-
based approaches. If no infrastructure is employed, the CAS retrieves information from
the context sources directly via wireless links or a multi-hop routing scheme is used.
Multi-hoping is used in Wireless Sensor Networks (WSN) [8] where context sources
collaborate and in Data Diffusion Systems [9, 10] where context sinks interact to dis-
tribute information. These technologies are only suitable if the distance between the
context source and the context sink is not too large (limited geographical scalability).

Early infrastructure-based systems directly linked CASs with sensors that were at-
tached to a Local-Area Network (tight coupling). To loosen the coupling two main
approaches can be distinguished. Service-centric approaches provide a homogeneous
interface for context retrieval from sensors. The Context Toolkit [11] (CTK) was the
first representative of this school of thought. It encapsulates sensors in so called wid-
gets that provide a unified interface to the CAS. The heterogeneity is diminished, but
application-specific code still needs to interact directly with context sources, i.e. sen-
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Fig. 2. Classification of context provision approaches

sors plus widgets. Other representatives are Solar [12] and iQueue [13, 14]. Data-centric
systems introduced a data repository (e.g. a tuple-space) between the context sources
and the CASs (e.g. [2]). The context sources provide context information to the data
repository. CASs can query the repository via a query language. In these systems the
CASs only need to comply to the service interface of the data repository and the used
information model of the context sources.

Many proposals were made how geographically scalable context provision infras-
tructure can be built using the loose coupling paradigm, e.g. ConFab [7, 15], Solar
[12], GLobal Smart Space (GLOSS) [16], Strathclyde Context Infrastructure (SCI)
[17, 18, 19], IrisNet [20, 21], and iQueue [13, 14]. All these approaches connect the sen-
sors to a local server that either acts as a data repository (ConFab, GLOSS, IrisNet), as
an execution environment (Solar, iQueue), or as both (SCI). Some systems assign sen-
sors to local servers merely based on geographical proximity (Solar, GLOSS, IrisNet,
iQueue). Others make the data repositories a representative of entities in an environ-
ment (like people, places, and things) (ConFab, SCI). Data repositories are in general
based on tuple-space technology (ConFab, GLOSS, SCI), but also XML-databases are
employed (IrisNet). The large-scale context provision infrastructures must be able to
answer queries that require data from many local servers. Thus, the local servers need
to be confederated in some way. Many systems use Peer-to-Peer routing technology
for this purpose (Solar, GLOSS, SCI). Others use XML hyperlinks between the data
repositories (ConFab) or employ the Domain Name System (IrisNet). The information
models that the approaches specify to express queries are very heterogeneous, though
most of them are XML-based. Some describe context sources and chains of operators
for the generation of context information. Others define functions that calculate the re-
quested context information based on context data that is described in an attribute-based
manner.

3.2 Scalable CAS Provision

Scalable context provision infrastructures are a very important building block for scal-
able context-aware systems. However, even if perfectly scalable context provision were
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given, there would still be some challenges left to allow for completely scalable context-
aware systems:

1. Numerical dimension: Large-scale CASs may have millions of users that collec-
tively cause a workload that is much too high for a single server. Thus, replicating
and distributing the CAS must be considered.

2. Geographical dimension: Large-scale CASs may have users that are spread over a
very large area. In this case also relevant context sources will be strongly distributed.
Since many interactions especially between the CAS and the context sources, but
also between the user and the CAS will be needed, there is a potential that the long
ways will lead to large response times of CASs. A solution is to distribute replicas
of the CAS to servers that are close to the user and to the context sources.

3. administrative dimension: The large-scale context provision infrastructures pos-
sess heterogeneous access interfaces. Especially interoperability on the semantic
level is a problem. Either a CAS must be able to deal with all of them or an infras-
tructure must be in place that makes the heterogeneity transparent for the CAS.

Little work has been done on the question how scalable CASs can be built. The
only works we are aware of are [6], [22], and [23]. These works suggest to expose
context sources and context repositories to the system as grid services. A grid service
is a Web Service that conforms to a set of conventions [24]. By using grid technology
interoperability on the signature level is reached and the scalability properties of grids
can be reused. Besides grids other technologies for scalable service provision exist.
They are classified in figure 3.

Fig. 3. Classification of CAS provision approaches

If too many requests need to be answered by a web-based application, one of the
most often used approaches is to employ a server farm. The application is replicated
and installed on many servers that are interconnected by a common high-speed Local-
Area Network (LAN). The workload is evenly distributed among the servers by an
intelligent switch. Computing clusters are similar to server farms. Computing problems
that are too large for a single server are divided into many parts that are solved in
parallel by many CPUs. Since the execution of one session of a CAS in general does
not overcharge a single server, server farms are more suitable for CASs than computing
clusters. Server farms address the numerical dimension, but the geographical dimension
of the scalability remains unsolved.
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Infrastructures that solve the numerical and geographical scalability problem are
grids [25], peer-to-peer (P2P) networks [26], and Content Delivery Networks (CDNs)
[27]. All these technologies are able to coordinate globally distributed servers. All three
infrastructures have their specific strengths. Grids excel at monitoring resources and
balancing load. P2P networks perform content-based routing in a very scalable manner
and CDNs are especially good at assigning client requests to nearby servers. The three
technologies are converging. Grids will use P2P routing. Recent proposals for P2P net-
works allow for routing to nearby servers and CDNs use the Apache Tomcat container
like the Globus Toolkit [28] (the most widely used toolkit for grid technology) as an
execution environment for applications.

To build globally scalable context-aware systems the best choice is to use one of
these three numerically and geographically scalable infrastructures to dynamically dis-
tribute replicas of CASs and to combine it especially with large-scale context provi-
sion infrastructures. However, coupling the CAS provision infrastructures with the var-
ious context provision systems poses some challenges like we will discuss in the next
section.

4 Components for Scalable Context-Aware Systems

In order to build globally scalable context-aware systems it is necessary to dynami-
cally replicate and distribute CASs on the servers of one of the three numerically and
geographically scalable service provision infrastructures that were outlined in the last
section. This infrastructure forms the upper layer in figure 4. In this way the numerical
and geographical scalability of the CAS is assured.

The replicas of the CASs that are placed on the geographically distributed servers re-
trieve context information from regional Context Information Services (CIS) (see lower
layer in figure 4). A CIS is an abstraction. It is any service that provides context infor-
mation. In most cases it will be a large-scale context provision infrastructure, but it can
also be a single sensor or a user’s handheld that provides context information. By com-
bining a large-scale service provision infrastructure with large-scale context provision
infrastructures numerical and geographical scalability is reached.

However, the administrative dimension is still a problem: The CISs in the various
regions may possess different access interfaces, even if they provide the same type of
context information. Figure 4 illustrates this with diversely shaped symbols. Since the
developer of a CAS does not know at design time on which servers his CAS will be
deployed and which CISs will be used, he cannot anticipate what the access interface
of needed CISs will be like. This is a major problem. The replicas of a CAS need an
execution environment that is the same on every server. This means that also the access
to context information must be identical on every server. Thus, the CAS distribution in-
frastructure needs to provide an integration layer that binds to the heterogeneous access
interfaces of CISs, maps the retrieved information to a standard information model,
and provides it to the CASs in a unified way. Such an integration layer is our CoCo
infrastructure. It will be outlined in section 4.1.

The CoCo infrastructure resides on each server and binds to local or regional CISs.
In general this CISs are large-scale context provision infrastructure. However, for some
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Fig. 4. Combining a scalable service provision infrastructure with large-scale context provision
infrastructures provides numerical and geographical scalability. However, the administrative di-
mension of the scalability problem is yet to be solved

applications it might also be useful that the user’s handheld itself looks for context in-
formation in its immediate vicinity via wireless technologies and passes the context
information to the CoCo infrastructure when it invokes the CAS via e.g. UMTS or
GPRS. For example, somebody might be looking for restaurants that can be reached
within 15 minutes with public transportation means and that are not overly crowded.
The information which bus stations are near the user is probably most efficiently re-
trieved via wireless multi-hoping methods. To find out which candidate restaurants still
have free seats available, however, is an information that is generated too far away from
the user to be accessible wirelessly. For the wireless gathering of context information
in the user’s immediate vicinity we developed an infrastructure that will be described
in section 4.2.

4.1 Context Composition Infrastructure

The Context Composition (CoCo) infrastructure [29] is a set of collaborating compo-
nents that generate requested context information. It solves the following problems: It
binds to regional CISs and can translate the provided context information into the stan-
dard information model. Moreover, it is able to execute workflows that are needed to
generate higher-level context information from low-level context information. These
workflows and needed pieces of context information are specified in a CoCo document
using the CoCo-language which is based on XML. It can be represented as a graph.
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Figure 5 shows an example for the generation of context information that a restaurant
finder might need. CoCo documents are mainly composed of factory nodes that spec-
ify which pieces of context information are needed and operator nodes that describe
how context information needs to be adapted, selected, aggregated, or processed in any
other way. A directed edge between two nodes stands for a context information flow. In
the example the user is looking for nearby restaurants or beer gardens (if the weather is
fine) that match his preferences he specified in a profile. He invokes the CAS and passes
his phone number. The CAS dynamically adds this phone number to the CoCo docu-
ment that describes the general context information needs of the restaurant finder. This
document is given to the CoCo infrastructure. Based on the phone number the user’s
profile and his current location can be found out. Not until the user’s position has been
retrieved, the temperature and the likelihood that it will rain can be requested because
these pieces of context information are dependent on the location. Since the CAS is
not interested in the temperature and the likelihood of rain directly, an operator node
is invoked that uses the former information to determine whether the weather can be
considered as good. The retrieved user preferences, the user’s location and the decision
if the weather is good are given back to the CAS.

Fig. 5. Example of a CoCo-Graph

The infrastructure that executes the CoCo-Graph consists mainly of a CoCo-Graph
Controller, a Context Retriever, the CoCo Processor and two caches like depicted in
figure 6.

The CoCo-Graph Controller receives the CoCo document from the CAS and exe-
cutes the specified steps. Thus, the CoCo-Graph Controller is the component that is in
charge of flow control. Whenever it parses a factory node, it sends the corresponding
information to the Context Retriever that responds with the respective context informa-
tion. Operator nodes result in a call to the CoCo Processor. When the output node is
reached, the results of the execution of the CoCo document are returned to the CAS.
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Fig. 6. CoCo Infrastructure

The Context Retriever discovers CISs, selects the most appropriate one and returns
the retrieved context information to the CoCo-Graph Controller. Both, the descriptions
of discovered CISs and the context information, are cached for later reuse.

The CoCo Processor executes explicit operations that are needed to derive a specific
piece of context information from one or many other pieces of context information.
For example, the CoCo Processor would process the operator node ”isWeatherGood”
to decide if the weather is good or bad, based on the retrieved temperature and the
likelihood of rain. The CoCo-Graph Controller also delegates implicit instructions to
the processor. These are conversion operations between different scales, i.e. formats,
of the same context information item. In our scenario, the CoCo Infrastructure locates
the user and passes his position to the factory node needed to retrieve the temperature
at the user‘s position. The position might be expressed in WGS84-coordinates, while
there might be only CISs available that accept coordinates exclusively in UTM-format.
At this point, the CoCo-Graph Controller invokes the CoCo Processor to try to convert
the information. For its task the CoCo Processor needs semantic information about the
information model and requires conversion operations between the various scales of
the same types of context information. This knowledge and functionality is stored in
the Information Model Library.

The CoCo infrastructure was conceived as an integration layer between large-scale
context provision infrastructures and execution environments for CASs. In the next sec-
tion we will describe how the CoCo infrastructure can be combined with wireless con-
text provision methods.
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4.2 Context Diffusion Infrastructure

We assume that when a user subscribes to a CAS, he downloads a thin client to his hand-
held. This thin client uses a Context Diffusion Infrastructure that is already installed on
the handheld to gather context information. The main principle of Context Diffusion
is that static server nodes announce information via local wireless radio technologies
like Bluetooth or IEEE 802.11. Mobile nodes listen to this information and cooperate
to disseminate the information by word of mouth.

The core of our Context Diffusion Infrastructure is our data diffusion protocol [30].
It is executed whenever two nodes come into radio range. These can either be two
mobile nodes or an immobile and a mobile node. The protocol works as follows:

1. First, profiles are transmitted between the peers. The profiles specify in which types
of context information the profile owner is interested.

2. The peer’s profile is used to search through the handheld’s cache of formerly ob-
tained pieces of context information.

3. All cached pieces of context information that might be of interest for the exchange
partner according to his profile are transmitted and are then stored on the receiver’s
side.

Since each handheld frequently executes a cache invalidation scheme that deletes
all pieces of context information that have become outdated or invalid because the user
has moved out of the region where the specific piece of context information could be
useful, only valid information that refers to the current region is exchanged.

The Context Diffusion Infrastructure offers an API for thin clients to add entries
to the profile. Depending on the application’s collection strategy, it can either add its
profile during its installation phase or when it is invoked. In the former case, the hand-
held scans continuously its environment for available context information, in the latter
case, context information collection is initiated on demand. The infrastructure allows
for push notification and for a request mode. Push notification means that the thin client
is informed everytime an interesting piece of context information is received. Alterna-
tively, the thin client can search the cache for relevant entries using the request mode.
Our favorite configuration is that the thin client initiates the context retrieval when it is
invoked. After a fixed amount of time it searches through the cache for relevant context
information, invokes the backend of the CAS via GPRS or UMTS and transfers the
context information to it.

Whenever the backend of a CAS is invoked by a client, it analyzes the request to
see whether context information was passed. If this is the case, the provided context
information is given to the CoCo infrastructure. The CoCo infrastructure receives the
information, transforms it into the standard information model if needed, and writes it
into the context information cache. The CAS operates in the normal way and requests
context information from the CoCo infrastructure with a CoCo document. Since the
Context Retriever within the CoCo infrastructure always starts looking in the cache
whether needed context information is already stored, the context information provided
by the client is very naturally introduced into the standard process of CoCo. The func-
tionality that is in place to check whether cached context information is usable for a
certain problem is reused to validate context information that was passed by the client.
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Additionally, the information that was gathered by one client is potentially reusable
for others. By writing the context information that was gathered by the client into the
CoCo cache instead of directly using it, it becomes transparent for the CAS in which
way context information was retrieved.

5 Conclusion and Future Work

In this article we have shown that some Context-Aware Services (CASs) need to be
globally scalable. We have outlined approaches for context provision and CAS provi-
sion and evaluated them with regard to their scalability. Good candidates as a suitable
CAS provision infrastructure are grids, P2P networks, and CDNs. These systems need
to be coupled with large-scale context provision infrastructures. To provide a homoge-
neous access interface to context information for replicas of CASs the CAS provision
infrastructures need to provide an integration layer that makes the heterogeneity of the
access interfaces of the context information services transparent for the CASs. The
CoCo infrastructure is such an integration layer. It can be combined with an infrastruc-
ture that allows to gather context information in the immediate vicinity of a user. These
approaches allow to build globally scalable context-aware services.

Currently, we are working on the development of efficient, but easily applicable
heuristics for the distribution of CASs in CDNs. We are developing a simulation that
allows to evaluate the resource consumption and improvements of user-perceived la-
tencies that are incurred by the various heuristics. Furthermore, we are refining our
infrastructures. Especially, the development of a generic model for context information
remains one of the hard research questions.
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