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Abstract. This paper investigates the efficiency of in-door next loca-
tion prediction by comparing several prediction methods. The scenario
concerns people in an office building visiting offices in a regular fashion
over some period of time. We model the scenario by a dynamic Bayesian
network and evaluate accuracy of next room prediction and of duration
of stay, training and retraining performance, as well as memory and per-
formance requirements of a Bayesian network predictor. The results are
compared with further context predictor approaches - a state predictor
and a multi-layer perceptron predictor using exactly the same evaluation
set-up and benchmarks. The publicly available Augsburg Indoor Loca-
tion Tracking Benchmarks are applied as predictor loads. Our results
show that the Bayesian network predictor reaches a next location pre-
diction accuracy of up to 90% and a duration prediction accuracy of up
to 87% with variations depending on the person and specific predictor
set-up. The Bayesian network predictor performs in the same accuracy
range as the neural network and the state predictor.

1 Introduction

We investigate to which extend the movement of people working in an office
building can be predicted based on room sequences of previous movements. Our
hypothesis is that people follow some habits, but interrupt their habits irreg-
ularly, and sometimes change their habits. Moreover, moving to another office
fundamentally changes habits too.

Our aim is to investigate how far machine learning techniques can dynami-
cally predict room sequences, time of room entry, and duration of stays indepen-
dent of additional knowledge. Of course the information could be combined with
contextual knowledge as e.g. the office time table or personal schedule of a per-
son, however, in this paper we focus on dynamic techniques without contextual
knowledge.

Further interesting questions concern the efficiency of training of a predictor,
before the first useful predictions can be performed, and of retraining, i.e. how long
it takes until the predictor adapts to a habitual change and provides again useful
predictions. Predictions are called useful if a prediction is accurate with a certain
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confidence level (see [14] for confidence estimation of state predictors). Moreover,
memory and performance requirements of a predictor are of interest in particular
for mobile appliances with limited performance ability and power supply.

The predictions could be used for a number of applications in a smart office
environment. We demonstrate two application scenarios:

— In the Smart Doorplate Project [I7] a visitor is notified about the probable
next location of an absent office owner within a smart office building. The
prediction is needed to decide if the visitor should follow the searched person
to his current location, go to the predicted next location, or just wait till the
office owner comes back.

— A phone call forwarding to the current office location of a person is an often
proposed smart office application, but where to forward a phone call in case
that a person just left his office and did not yet reach his destination? The
phone call could be forwarded to the predicted room and answered as soon
as the person reaches his destination.

Our experiments as part of Smart Doorplate Project yielded a collection of
movement data of four persons over several months that are publicly available
as Augsburg Indoor Location Tracking Benchmarks [12][13]. We use this bench-
mark data to evaluate several prediction techniques and compare the efficiency
of these techniques with exactly the same evaluation set-up and data. Such a
comparison of context prediction techniques has to our knowledge never been
done. Moreover, we can estimate how good next location prediction works - at
least for the Augsburg Indoor Location Tracking Benchmark data.

Several prediction techniques are proposed in literature — namely Bayesian
networks [6], Markov models [2] or Hidden Markov models [16], various neural
network approaches [5], and the State predictor methods [I5]. The challenge is
to transfer these algorithms to work with context information.

For this paper we choose the Bayesian network approach, because Bayesian
networks are well suited to model time, and compare the results with the best
results from the state predictor method described in [15] and the multi-layer
perceptron predictor defined in [I8]. The benchmark data allowed next location
prediction and duration of stay prediction based on previous room sequences,
previous duration of stays, and time and date of room entry. The prediction
accuracies of the Bayesian predictor are compared with state and multi-layer
perceptron predictor data based on room sequences only.

The next section states related work on context prediction except for our own
techniques outlined in section Section Blintroduces the application scenarios
and the applied benchmarks, and section ] shows the chosen dynamic Bayesian
network model of the application scenario. Section Bl gives the evaluation results.
The paper ends with the conclusions.

2 Related Work

The Adaptive House project [I0] of the University of Colorado developed a
smart house that observes the lifestyle and desires of the inhabitants and learned
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to anticipate and accommodate their needs. Occupants are tracked by motion
detectors and a neural network approach is used to predict the next room the
person will enter and the activities he will be engaged. Hidden Markov models
and Bayesian inferences are applied by Katsiri [§] to predict people’s movement.
Patterson et al. [I1] presented a method of learning a Bayesian model of a
traveller moving through an urban environment based on the current mode of
transportation. The learned model was used to predict the outdoor location of
the person into the future.

Markov Chains are used by Kaowthumrong et al. [7] for active device selec-
tion. Ashbrook and Starner [I] used location context for the creation of a predic-
tive model of user’s future movements based on Markov models. They propose to
deploy the model in a variety of applications in both single-user and multi-user
scenarios. Their prediction of future location is currently time independent, only
the next location is predicted. Bhattacharya and Das [3] investigate the mobil-
ity problem in a cellular environment. They deploy a Markov model to predict
future cells of a user.

An architecture for context prediction was proposed by Mayrhofer [9] com-
bining context recognition and prediction. Active LeZi [4] was proposed as good
candidate for context prediction.

All approaches perform location prediction with specific techniques and sce-
narios. None covers a smart office scenario and none compares several prediction
techniques. Moreover, none of the evaluation data is publicly available. Therefore
the applied techniques are hard to compare.

3 Application Scenarios and Benchmarks

The Smart Doorplate application [I7] acts as testbed for the implementation
and evaluation of the proposed Bayesian predictor. A Smart Doorplate shows
information about the office owner like a traditional static doorplate. The Smart
Doorplate, however, additionally shows dynamic information like the presence
or absence of the office owners. If an office owner is absent from his office the
doorplate directs a visitor to the current location of the absent office owner.
Furthermore it predicts the next location of the absent office owner and the
entering time of this location. This additional information can help the visitor
to decide whether he follows the office owner or waits for him.

The predicted location information can also be used for switching over the
phone to the next location of a clerk. That means when the clerk leaves his office,
the system predicts the next location of the clerk and switches over the phone
call to this location.

To evaluate prediction techniques in the two described scenarios we needed
movement sequences of various clerks in an office building. Therefore we recorded
the movements of four test persons within our institute building and packaged
the data in the Augsburg Indoor Location Tracking Benchmarks [12).

We collected the data in two steps, first we performed measurements during
the summer term and second during the fall term 2003. In the summer we
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Fig. 1. Floor plan of the institute building

recorded the movements of four test persons through our institute over two
weeks. The floor plan of the institute building is shown in figure[[l The summer
data range from 101 to 448 location changes. Because this data was too short
we started a further measurement with the same four test persons in the fall.
Here we accumulated date over five weeks. The fall data range from 432 to 982
location changes. These benchmarks will be used for evaluating the Bayesian
predictor in the described scenarios.

4 Bayesian Network Modeling and Implementation

A Bayesian predictor uses the conditional likelihood of actions represented by
variables applying the Bayesian formula on a Bayesian network model. A Bayesian
network is a directed acyclic graph of nodes representing random variables (X;)
and arcs representing dependencies between the variables. In case there is an arc
from X7 to X5 then node X; is a parent of node X5. Each variable takes values
from a finite set and specific probabilities for those values. To calculate the joint
probability distribution the following chain rule is used:

P(X,... X,) = [[ P(Xi|Parents(X;))
i=1

In order to predict a future context of a person, the usage of a dynamic
Bayesian network was chosen. This network consists of different time slices which
all contain an identical Bayesian network. The nodes between time slices are
connected with arrows to represent dependencies among these time slices.

In our case we predict future locations of a person and additionally the dura-
tion of stay and the time when the person is probably changing to a new location.
Our application scenario is modelled by the dynamic Bayesian network shown
in figure2l This network exemplarily shows three time slices at time ¢t — 1, ¢ and
t + 1 but actually there is no limit of time slices in the past or in the future.
Since a Bayesian network is assigned to each person in the system, the person
doesn’t appear as a variable in the network.



Prediction of Indoor Movements Using Bayesian Networks 215

R
®
Y

CD t+1

[
o
S
I
S
T
[ @
[
[
[
[
[
[
[
[
[

Fig. 2. Dynamic Bayesian network with dependencies between different time slices
(dotted arrows)

In each time slice the current duration (CD) basically depends on the current
room (C'R) of the person. The current room essentially depends on the sequence
of the last n rooms visited by the person. Thus the C'R’s from previous time
slices are connected to the CR in the current time slice. The time of day (T'D)
and the weekday (WD) are also important for the prediction of a person’s spe-
cific behavior. For this reason C'D is closely linked to the current T'D and the
current W D. The current room also depends on those two influences but from
the previous time slice.

5 Evaluation

5.1 Location Prediction

Our first set of evaluations concerns the prediction accuracy and the quantity
of performed predictions for next room prediction including and excluding pre-
dictions from own office. To predict the next location when somebody leaves his
own office is particularly hard, but important for the scenario of phone prop-
agation. Otherwise, for the Smart Doorplate scenario of a visitor standing in
front of an office with an absent office owner, it is only interesting if (and when)
an office owner comes back or proceeds to another location - and not where a
present office owner will go when he leaves his office.

There are two additional factors that influence the evaluation results. First, at
the very start the prediction table is totally empty and a useful prediction cannot
be done. When a move from a certain office to another has never been done, we
cannot predict it. Thus we exclude from the prediction results given below all
cold start predictions where we find an empty entry in the prediction table. As
consequence the total number of predictions — called quantity — decreases, but
the prediction accuracy increases since the prediction accuracy is defined as ratio
of the number of correct predictions to the total number of predictions.
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Second, the prediction will still be unconfident, when only very little data
about previous moves of a person is known to the predictor. In many application
cases it is better to perform no prediction instead of a wrong prediction. A
predictor trained with data of several weeks will be better than an untrained
predictor. We will start our evaluations with untrained predictors using the fall
benchmark data only and show how much a predictor trained with the summer
benchmarks data improves for the predictions of the fall data.

Evaluation set-up 1: Next location prediction without training, pre-
dictions from own office included. Table[llshows the results of next location
prediction of the four test persons excluding empty predictor entries and with-
out training. The prediction accuracies (and quantities) with a history of 1 to 5
rooms are shown separately.

Table 1. Prediction accuracy of location prediction in percent (quantity of predictions
in parentheses in percent) with predictions from own office included

1 room 2 rooms 3 rooms 4 rooms 5 rooms

Person A||55.39 (95.35)|55.61 (87.91)[48.65 (71.63)(51.79 (54.42)|35.38 (33.49
Person B|[56.93 (97.15)|53.65 (90.24)|50.42 (76.22)(53.94 (58.33)|48.10 (38.62
Person C|[43.69 (97.59)|44.73 (87.72)|38.71 (67.98)(48.28 (47.15)|35.48 (28.07
Person D||50.14 (97.24)|50.61 (87.56)(50.79 (70.51)|51.74 (53.23)|45.28 (36.64

N2 NI e Nl

The results show for most persons an improvement of accuracy if the room
sequence is increased from one to two rooms. For person D the accuracy increases
up to 4 rooms, whereas the correct predictions of persons A and C decreases after
2 rooms, and for person B already decreases after 1 room. The explanation is
simply that person B repeats less often a long room sequence — perhaps a specific
habit of person B.

For predictions based on longer room sequences the quantity of predictions
decreases because the cold start predictions, which are excluded from the table,
concern also the predictions that could be done with less rooms. In particular the
number of predictions for person C decreases extremely for 5 room sequences. A
low quantity means that most of the predictions are empty because the system
is in the learning process. A high quantity shows that the system already knows
many patterns and delivers a prediction result. Because of this a larger data base
could improve the quantity.

Evaluation set-up 2: Next location prediction without training, pre-
dictions from own office excluded. The second evaluation set-up ignores
predictions if a person is in his own office. The results in table 2l show that the
prediction accuracy improves significantly in this case.

The predictor of person A reaches an accuracy of about 90%, but the accuracy
decreases for a longer previous room sequence. In contrast, the accuracy increases
with a longer room sequence for person D, but the accuracy decreases if the
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Table 2. Prediction accuracy of location prediction in percent (quantity of predictions
in parentheses in percent) without predictions from own office

1 room 2 rooms 3 rooms 4 rooms 5 rooms

Person A[[90.19 (91.15)|89.47 (83.19)|90.47 (59.29)|87.27 (48.67)|88.24 (19.47)
Person B||77.65 (94.83)(80.17 (85.98)|78.18 (64.94)|81.25 (50.18)|78.57 (24.35)
Person C|[66.67 (95.88)(67.45 (82.02)(61.19 (59.18)|72.83 (42.32)|70.97 (18.73)
Person D||75.00 (95.43)|75.84 (80.91)|76.07 (61.83)|76.82 (44.81)|76.74 (27.80)

room sequence is longer than four rooms. These results show that the sequence
of previous rooms influences the accuracy of predictions, however, the results
exhibit no common rule. However, some persons act in certain patterns and a
better prediction is made if the patterns are included. Table [2] shows also that
the quantity decreases with a longer room sequence. In these cases the predictors
deliver good results but very rare.

Evaluation set-up 3: Trained versus untrained next location prediction
for two room sequences, predictions from own office excluded. Up to
now we considered the predictors without any previous knowledge about the
persons. We want to analyze the behavior of the predictors if the predictors
will be trained with the summer data of the benchmarks. After the training the
measurements were performed with the fall data to compare the trained with
the untrained predictors, because the results of the untrained predictors were
reached by using only the fall data. The results in table [§] show that the training
improves the prediction accuracy. Also the quantity (in parentheses) is higher
with training. With these results we can see that a larger data base has a positive
effect because the system retains knowledge about certain behavior patterns.

Table 3. Prediction accuracy of location prediction in percent (quantity of predictions
in parentheses in percent) with and without training based on two previous rooms, and
without predictions from own office

Without training|With training
Person A|| 89.47 (83.19) |[89.65 (90.27)
Person B|| 80.17 (85.98) | 83.72 (92.99)
Person C|| 67.45 (82.02) |72.14 (88.76)
Person D|| 75.84 (80.91) |76.49 (87.55)

5.2 Duration Prediction

Our second prediction target is the duration of a person’s stay in the current
room (his own office or a foreign room). Again we consider prediction accuracy
and quantity, additional influence factors as well as trained versus untrained.
To improve the prediction accuracy we tested the influence of the time of
the day and the weekday. The week consists of seven days, so we used the
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discrete values "Monday” to ”Sunday”. For sectioning the day we must find
good discrete values. When we are sectioning the day in too many intervals, for
some intervals there will not be a sufficient amount of data for a good prediction.
So we classified the day in four discrete time intervals: morning (7:00 a.m. to
11:00 a.m.), noon (11:00 a.m. to 2:00 p.m.), afternoon (2:00 p.m. to 6:00 p.m.),
and night (6:00 p.m. to 7:00 a.m.). Likewise, the duration is partitioned in nine
intervals of 0-5, 5-10, 10-15, 15-20, 20-30, 30-45, 45-60, 60-120, and more than
120 minutes. We also tested the influence of the time of the day and weekday
on next location prediction, however, without reaching an improvement of the
prediction accuracy. Therefore we omit results of these measurements.

Evaluation set-up 4: Duration prediction based on current room and
all combinations of time of day and weekday including own office. In
our modeled network (see figure 2)) the duration is independent of the previous
room sequence of a person. Therefore we investigated the influence of the time
of day and the weekday based on the current room only (room sequence of one).

Table 4. Prediction accuracy of duration prediction in percent (quantity of predictions
in parentheses in percent) including own office

None Time of day| Weekday Both

Person A|[53.67 (95.35)|54.74 (88.37)[46.33 (82.79)|44.37 (66.05)
Person B|[60.21 (97.15)[59.83 (93.09)|55.84 (89.63)|54.55 (78.25)
Person C||73.93 (97.59)(73.52 (92.76)|72.41 (89.91)|70.09 (76.97)
Person D|[53.55 (97.24)[52.42 (90.55)[48.07 (88.71)[45.89 (72.81)

Table (@] shows the results of the duration prediction where the unknown
predictions were effectively ignored. The results don’t show any improvement if
the time of day and the weekday is considered. In almost all cases the prediction
accuracy and the quantity decrease by considering the time parameters. The
reason for this behavior can be the small data base with small time structure.
The quantity decreases since the number of prediction decreases with a higher
number of influence parameters like in the case of next location prediction.

Evaluation set-up 5: Duration prediction based on current room and
all combinations of time of day and weekday excluding own office.
This evaluation set-up ignores predictions of the duration if the person is in
his own office. Also in this scenario we investigated the influence of the time of
day and the weekday. Table Bl shows that the prediction accuracy is significantly
improved opposite the result including the own office (see table ). Obviously, it
is particularly hard to predict the duration of a person’s stay in his own office.

In duration prediction the influence of the time of day improves the predic-
tion accuracy for person A, B, and C. The consideration of the weekday doesn’t
improve the accuracy for all persons. The combination of the time of day and
the weekday delivers again better results for persons A, B, and C as predictions
without any time parameter. The reason for the impairment of the consideration
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Table 5. Prediction accuracy of duration prediction in percent (quantity of predictions
in parentheses in percent) excluding own office

None Time of day | Weekday Both

Person A||77.67 (91.15)|84.62 (80.53)|71.25 (70.80)|80.00 (48.67)
Person B|[86.38 (94.83)|87.87 (88.19)|83.48 (82.66)|88.20 (65.68)
Person C||83.59 (95.88)[83.97 (88.76)|83.56 (84.27)|83.62 (66.29)
Person D||68.70 (95.44)|68.63 (84.65)|61.42 (81.74)|63.64 (59.34)

of the weekday could be the small data base which contains no weekly structure.
If we include more parameters the quantity decreases as expected. So you must
find a good balance between the accuracy and the quantity, e.g. it is not mean-
ingful for person B to increase the accuracy from 86% to 88% when the quantity
decreases from 94% to 65%.

Evaluation set-up 6: Duration prediction with and without training
based on current room and all combinations of time of day and week-
day excluding own office. To investigate the training behavior of duration
prediction we use the same set up like in the case of next location prediction. We
used the summer data for training. Then we compared the results which were
reached with the fall data with the previous results which were reached with the
same data sets. Except for person B we can see in table [fl an improvement of the
prediction accuracy. The quantity is better with training as without training for
all persons.

Table 6. Prediction accuracy of duration prediction in percent (quantity of predic-
tions in parentheses in percent) excluding own office with and without training, using
parameter time of day

Without training| With Training
Person A|| 84.62 (80.53) | 85.58 (92.04)
Person B|| 87.87 (88.19) | 86.54 (95.94)
Person C|| 83.97 (88.76) | 86.77 (96.25)
Person D|| 68.63 (84.65) | 69.78 (93.36)

5.3 Retraining

A problem of prediction techniques which are based on previous behavior pat-
terns is the learning of behavior changes. Most of the techniques need a long
retraining process. Therefore we simulated a behavior change similar to the
move of a person to a new office by using 60 data sets of person A followed
by 140 data sets of person C. We compared the next room prediction of this
set-up with the room prediction results of person C on its own. A well-trained
Bayesian predictor needs a long retraining to adapt to the habit change. There-
fore we investigated the influence of the number of previous location changes
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called internal storage which will be used to calculate the conditional likelihood.
By restriction the internal storage to 100 or 200 data sets only the retraining
can be accelerated. By using the internal storage 100 retraining was done after
90 room changes. In the case of internal storage 200 the retraining ended after
130 room changes. There is no universal rule for determining the optimal size
of the internal storage. It depends on the application in which the prediction
system is used.

5.4  Storage and Computing Costs

Every person has its own predictor. A predictor must store a sequence of the
last r room changes where r is the size of the internal storage. For every room
change the room, the time of day, the weekday, and the duration must be stored.
In our evaluation set-up there are 15 different rooms which can be stored with
4 bits. For the times of day we need 2 bits, and 3 bits for the weekday. For
the duration we used nine discrete values which need 4 bits. Thus the stor-
age costs C' of the sequence of the room changes of a person are the follow-
ing:

C =r - (room + time_of _day + weekday + duration)
=7 (4 bit + 2 bit + 3 bit + 4 bit)
=r-13bit

We realized the Bayesian predictor in Java and we tested the predictor on
two different systems, a PC with a clock speed of 2.4 GHz and a memory of 1
GB, and a PDA with a clock speed of 400 MHz and memory of 64 MB. The
query speed depends on the size of the internal storage for the sequences of
room changes. Therefore we used a large internal storage of 2000. The eval-
uated predictor used a room sequence of five rooms and no time parameters.
In the simulation the predictor handled five times the fall data of person B.

On both systems we executed this test three times. The results are shown in
table [7l

Table 7. Computing time on PC and PDA

| PC | PDA |
processor Intel Pentium 4|Intel PXA250
clock speed 2.4 GHz 400 MHz
memory 1 GB 64 MB
average computing time 5.44 s 1065.41 s
number of predictions 1355 1355
average computing time per prediction 4.01 ms 786.28 ms
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5.5 Comparison with Other Techniques

In previous works we investigated other techniques to predict the next location
of a clerk. Specially we developed a new prediction technique which is called
state predictor method [15]. This method was motivated by branch prediction
techniques of current microprocessors and is similar to the well-known Markov
predictor. Furthermore we implemented a neural network to predict the next
room. The neural network was a multi-layer perceptron with back-propagation
learning [18].

Table 8. Prediction accuracy in next location prediction of Bayesian network, Neural
network, and State predictor (in percent)

Bayesian network|Neuronal network|State predictor
Person A 85.58 87.39 88.39
Person B 86.54 75.66 80.35
Person C 86.77 68.68 75.17
Person D 69.78 74.06 76.42

To compare the three different techniques we evaluate them in the same
scenario and with the same set-up. We used the trained predictor of set-up
3 (2 room sequence, own office ignored) as basis for all compared techniques.
Table B shows the prediction accuracy of the different prediction techniques.
The Bayesian network delivers the best results for persons B and C and the
state predictor performs best for persons A and D.

6 Conclusion

This paper investigated the efficiency of in-door next location prediction and
compared several prediction methods. We modelled the scenario by a dynamic
Bayesian network and evaluated accuracy of next room prediction and of dura-
tion of stay prediction, training and retraining performance, as well as memory
and performance requirements. The results were compared with the state pre-
dictor and multi-layer perceptron predictor methods. Our results showed that
the Bayesian network predictor reaches a next location prediction accuracy of
up to 90% and a duration prediction accuracy of up to 87% with variations
depending on the person and specific predictor set-up. The Bayesian network
predictor performs in the same accuracy range as the neural network and the
state predictor.
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