The COMPASS Location System

Frank Kargl and Alexander Bernauer

University of Ulm, Dep. of Multimedia Computing, Ulm, Germany

Abstract. The aim of COMPASS (short for COMmon Positioning
Architecture for Several Sensors) is to realize a location infrastructure
which can make use of a multitude of different sensors and combine their
output in a meaningful way to produce a so called Probability Distri-
bution Function (PDF) that describes the location of a user or device
as coordinates and corresponding location probabilities. Furthermore,
COMPASS includes a so called translator service, i.e. a build-in com-
ponent that translates PDFs (or coordinates) to meaningful location
identifiers like building names and/or room numbers. This paper gives a
short overview on the goals and abilities of COMPASS.

Motivation

There are a lot of situations in mobile computing where mobile nodes need
to determine their current position. Ubiquitous computing applications derive
context information from this position, e.g. in order to determine whether a user
is currently at home, at work or on the way in between. Location-aided routing
protocols for ad-hoc networks need position information to support their routing
decisions. Navigation systems naturally rely on precise position information to
plan the further route of a car or pedestrian. To support this large demand that
applications have for precise location information, a number of commercial and
research projects are working on this subject. Section Pl gives an overview on
some of these activities.

We have identified two major challenges that are not completely resolved yet:

1. Location information from multiple sensors needs to be combined effectively
in order to present one and only one position to the application. Any single
location sensor has drawbacks, e.g. is usually not available inside buildings,
RFID sensors or WLAN/Bluetooth APs are only available where installed
etc. So in order to provide reliable and pervasive location support, an ar-
chitecture must use multiple sensors, combine their results and present this
to the application. The application should not need to worry about what
sensor(s) were used for the current position information. Additionally com-
bining the results from multiple sensors may improve the precision of overall
results.

. Raw coordinates may not really be useful to an application that needs to
know the position in terms of buildings, rooms, street names etc. So a lo-
cation system should include an infrastructure to resolve the raw position
information to some kind of symbolic position.

T. Strang and C. Linnhoff-Popien (Eds.): LoCA 2005, LNCS 3479, pp. 105-{IT2] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

106 F. Kargl and A. Bernauer

The primary focus of COMPASS will be to address these two issues by both
including many different sensors into the system using a plugin interface and
by providing a translator that is able to derive symbolic location information
from the raw coordinates received from the locator. COMPASS is a software
framework that can be used by arbitrary applications for location retrieval.

2 Related Work

The need of location systems is almost as old as mobile computing itself. Many
of them use satellite navigation systems like GPS [G93] or the future Galileo
system [GO5]. A major problem of satellite navigation systems is the fact that
the antenna of the receiver usually needs a direct line-of-sight towards a number
of different satellites. So they are only useful for outdoor navigation.

As many ubiquitous computing projects include mostly indoor scenarios, re-
searchers started to develop specialized indoor location systems. Prominent ex-
amples include the Cricket Location-Support System [P00] or the Bat [H97].
These systems make use of different kinds of sensors, like scanning for ultra-
sound or radio beacons or observing nearby WLAN or Bluetooth access points.

Unfortunately most of these location systems do not work together and many
can use only one single kind of sensor. So there is a clear need for a framework
that can combine the output of different kinds of location sensors into one single
and consistent result.

Such a system has been proposed as part of the HeyWow project [HO3]|.
In [AOILWO02|] the authors suggest the use of so-called probability density func-
tions (PDF's) to represent the location measurement of one sensor or the com-
bined measurement of multiple sensors. Other similar projects include [B03|
H02).

As our architecture is based in part on these ideas, we first give some details
on how position is represented in COMPASS before describing the architecture
itself.

3 Position Representation

A major issue in positioning systems is how to express the position. COMPASS
knows two kind of position representations: a geocoordinate based representa-
tion and one that delivers a semantical description of the current position, like
the current room number or a street address. The functionality of COMPASS
includes a mechanism to translate a geocoordinate to a semantic position de-
scription automatically, as sensors often deliver the first representation whereas
applications often need the semantic representation.

No matter what kinds of sensors are in use to determine geocoordinates, most
of them will inevitably introduces some kind of error. E.g. GPS has a typical
error of a few meters, estimating the position based on available WLAN access
points will deliver results with a precision of a few dozens to a few hundreds of

The COMPASS Location System 107

meters, depending on local conditions. So delivering a single point as position
information will never be accurate.

Therefor COMPASS expresses all position information as Probability Distri-
bution Functions (PDFs) like introduced in [AOTL,[W02]. PDFs represent a two
or three dimensional area in which they express the probability of being at a
certain position. PDFs use a Cartesian coordinate system with a north-south
(y), east-west (x) and up-down (z) axis. Additionally a PDF contains the origin
expressed as WGS 84 coordinates. This way, multiple PDF's can be correlated
and combined.

Fig.1. Example of Probability Distribution Function (from [A01])

Figure [Il shows an example PDF which might represent a user that is inside
a building with crossing corridors. This information can e.g. be the result of a
radio sensors which detected that the mobile user entered this corridor and has
not left it since. Combined with PDFs from other sensors, the position within
the corridor might be narrowed down further.

In parallel to coordinates, positions may also be provided in a symbolic rep-
resentation. At the moment we use a hierarchical string of the form ”‘coun-
try.city.streetname.streetnumber.roomnumber”’ for simplicity. But we are now
switching to a more powerful RDF-based representation that offers a very flexible

description of locations. See the final section for an outlook on this mechanism.

4 Architecture and Components

4.1 Principles

COMPASS is designed to run on mobile devices. Therefore memory capacity,
CPU speed and power consumption have to be taken into account. Depending
on the application’s needs the desired accuracy of position determination can
reach from some centimeters to several hundred meters. COMPASS is designed
to work with different degrees of accuracy to be usable for a wide spectrum of
applications.

To gain a maximum of flexibility any dynamic content is separated from the
COMPASS system and displaced to remote databases. A database is accessed
using Web Services technology and is generally called service within the con-
text of COMPASS. The application can optionally influence the selection of the

108 F. Kargl and A. Bernauer

services. It is possible for both the application and the COMPASS system to
replace services at runtime without deep impact.

4.2 Overview

Figure 21 shows the overall architecture of COMPASS.

HEIE
- B38|z
AP-Loc ol |29* |5
Service| | @[;—U 21| |5
3| 5]le|el|l&||x 1
| =T~ - 3 =1 = o
Building|, | | . 3 =
Service i b o
3 Locator ~ oS
Other | | | % S
Service 3
= Translator T
COMPASS

Fig. 2. COMPASS architecture

COMPASS has a plugin based design. For any source of position information
exists a corresponding plugin. The plugins are connected to the so called Locator
and deliver a PDF to it on demand. A plugin may use a service for accessing
additional information. The task of the Locator is to determine the compound
PDF of all PDFs supplied by the plugins. Additionally the Locator computes
the position of the highest probability.

A plugin may register itself at the Locator to always get the latest compound
PDF. This is useful for sensors which provide only relative position informations.
To provide a human readable representation of the position with the highest
probability there is a Translator component.

It will use webservices, that are able to convert PDFs to symbolic location
informations. These symbolic location informations may be represented as hi-
erarchical strings like ”‘germany.ulm.university.main_building.027.3303”’. It is
possible to specify the hierarchical depth of the response string. In the future we
plan to use a more flexible, XML-based format instead of simple strings.

The Service Finder is responsible for finding proper RPC services and to
assign them to the plugins and the Translator. Using standard Web Service
technologies like WSDL, UDDI and SOAP, it will find local services that provide
information to plugins or the Translator.

Locator and Translator are called by the Control unit which provides the
API. It is also responsible for initialization of all components. The API provides
either the compound PDF or the WGS84 coordinates of the most likely position.
Additionally the application can retrieve the symbolic position information.

The COMPASS Location System 109

4.3 Plugins
Currently four plugin types are supposed to be used:

AP plugin: This module uses WLAN access points as source of position in-
formation. It needs a service to resolve the access point’s MAC to a geographic
position. The service provides the WGS84 coordinates of the AP and a power
density spectrum. From this information the plugin can compute a PDF with
respect to properties of the sensor’s antenna. If multiple access points are within
reach one PDF for each access point can be computed.

GPS plugin: A NMEA capable GPS sensor is used to retrieve the current posi-
tion. This can immediately be transformed into a PDF with Gaussian distribu-
tion. The error depends on receiving conditions, number of available satellites,
etc.

RFID plugin: RFID tags have only a short range. But if they are scattered
throughout a building at doors and gateways they can provide position informa-
tion with a very good accuracy. The RFID plugin is statefull and for instance
logs if one enters a room. A service is needed for resolving the tag’s IDs and to
retrieve information about the building’s structure. The RFID plugin typically
provides a PDF with equal distribution for the whole room which was entered
last.

Acceleration plugin: This plugin uses a gyro sensor to gain relative position
information. With the help of the last know position the plugin can compute
a PDF. The distribution function usually is a sphere around the last known
position. If a compass is additionally used the sphere can be clipped.

5 Implementation

5.1 Probability Distribution Functions

A PDF maps from Cartesian coordinates to probabilities. Therefore every PDF
has an origin, which is given in WGS84 coordinates. A PDF can be accessed
by supplying coordinates and retrieving the corresponding probability. To im-
plement a PDF on a hardware we need a finite and discrete representation. So
every PDF has a resolution and a maximum expansion for each dimension. A
PDF always covers a cuboid. When iterating over the cuboid the sum of the prob-
abilities must always be one. It is expedient to agree on a maximum resolution
for all PDFs. Our implementation uses a maximum resolution of 10 centimeters.
This should be adjusted depending on the precision of the existing sensors and
the desired accuracy.

The naive approach for an implementation of a PDF is a three dimensional
array. This is easy to implement and has minimum time penalty for accessing.
But this approach is not practical for all possible PDFs, as depending on the
resolution and the expansion of the PDF it quickly blasts the memory capabilities

110 F. Kargl and A. Bernauer

of any mobile device. To save memory the intern resolution can be reduced by
using interpolation. Of course accuracy suffers from this.

A second possibility is to have a function representing a mathematical for-
mula, which calculates the probability on demand. This approach has minimum
memory requirements but is expensive at runtime. A mathematical description
of some physical behavior often differs from reality or the best known formula
is too complex for computation at runtime. Furthermore reality may differ from
the mathematical description locally because of some irregularities such as ob-
stacles which are not considered by the formula. So this approach is not practical
for all possible PDFs, either.

To combine the advantages of both approaches we define the PDF container.
A PDF container is either a PDF or a list of PDF containers. In the second case
requests are delegated to the proper containers. So a container looks like a PDF
but can cover a hierarchy of sub-PDF's, each being optimized for access on the
set of coordinates they cover. When accessing the container it has to determine
which container is responsible.

If the number of sub-PDF's is small, three dimensional polygon intersections
are a good way to determine the responsible sub-PDF. If the number of sub-
PDFs is large, Z curves [B99] are used to map the three dimensional coordinates
to a linear search index of a binary tree.

5.2 Modules

Plugins: Every plugin creates its own thread on initialization. The Locator can
trigger the determination of a PDF. When finished the PDF is returned using
a callback to the Locator. The plugin is allowed to deliver a list of PDFs when
there are multiple sources of information. But is is also allowed to compute a
compound PDF on its own and deliver only this one. The plugin is allowed to
return no PDF, if it is unable to determine one. The stub of the webservice
is supplied by the Service Finder. A plugin is allowed to cache results from a
service. But if the Service Finder assigns a new service the cache has to be
invalidated. A plugin is allowed to be statefull. If the Service Finder assigns a
new service the state has to be reset if it depends on the service. Otherwise the
state is allowed to be reset.

Locator: The task of the Locator is to poll all plugins on demand and to deliver
the compound PDF of all returned PDFs. The Locator creates its own thread
on initialization. When triggered by the control unit the locator triggers every
plugin to determine the PDFs. As soon as every plugin delivered one ore more
PDF or after a timeout the compound PDF is built and returned to the control
unit via callback. The compound PDF is a special PDF container. The difference
to normal PDF containers is that there can be multiple responsible PDF's for a
set of coordinates. For mathematical details on how to combine different PDF's,
see [A01LW02).

Translator: The translator uses the point of maximum likelihood from the
combined PDF and searches via the service finder for a suitable service that can
determine a symbolic representation for that position.

The COMPASS Location System 111

Service Finder: The service finder is responsible to find webservices and to
supply the plugins and the translator with a proper stub. The service finder is
allowed to assign any service at any time to any module. It is also allowed to
remove a service when the service is not reachable. In this case the module is
unable to fulfill its task. The Service Finder can use several techniques to find
an webservice. This includes Jini, UDDI or SLP.

6 Summary and Outlook

COMPASS provides an architecture that allows the concurrent use of multiple
location sensors that can assist each other in finding positions and reduce po-
tential errors. In addition the Translator provides symbolic position information
that can be retrieved from local web services.

We are currently finishing a prototype implementation that includes two
plugins (GPS and AP). As soon as this is finished, we will do some real-world
analysis in order to verify, that this approach is practical and really decreases
erTors.

On the conceptual layer, we are investigating how to create a more flexible
description of symbolic position information. Depending on the current context,
an application may understand a location as ”being in a certain city”, "be-
ing inside a specific building”, "being near some important monument”, at a
certain postal address, etc. In order to express this information about a given
geolocation, COMPASS represents such facts as RDF/XML documents using
the Resource Description Framework developed by the W3C [W05] as part of
their Semantic Web initiative. The following RDF document shows an example,
where the object "myself” is located at some coordinates, at an certain address
and inside a specific building.

<?7xml version="1.0" encoding="iso-8859-1" 7>
<rdf :RDF xmlns:rdf="http://wuw.w3.org/1999/02/22-rdf-syntax-ns\#">
<0bject rdf:nodeID="myself">
<locatedAt> <Coordinates rdf:nodeID="myCoords" lc:type="WGS84">
<longitude parseType="Resource">
<rdf :value>010°01.538E</rdf :value>
<coordUnit>degree<coordUnit>
<longitude>
<latitude rdf:parseType="Resource">
<rdf:value>48°27.182N</rdf:value>
<coordUnit>degree<coordUnit>
<latitude>
<Coordinates> </locatedAt>
<locatedAt>
<Address>
<street>Albert-Einstein-Allee></street> <number>11</number>
<city rdf:resource="http://ulm.de/" />
</Address>
</locatedAt>

112

F. Kargl and A. Bernauer

<locatedAt>

<Building rdf:about="http://uni-ulm.de/campus/Uni0Ost">

<inPart><BuildingPart>027</BuildingPart></inPart>

</Building>

</locatedAt>
</0Object>
</rdf :RDF>

This way applications may be enabled to combine the location information
with other documents from the Semantic Web like route information. Then e.g.
navigation systems may automatically infer that you are on an Autostrada in
Italy and that there the general speed limit is 130 km/h.

References

[A01]

[B99]

[B03]

[G93]
[GO5]
[H97)

[HO3]
[HO02]

[POO]
[WO05]

[Wo2]

M. Angermann & J. Kammann & P. Robertson & A. Steingafl & T. Strang,
Software representation for heterogeneous location data sources within a prob-
abilistic framework, International Symposium on Location Based Services for
Cellular Users, pp. 107118, Locellus 2001.

Christian Boehm & Gerald Klump & Hans-Peter Kriegel, XZ-Ordering: A
space-filling curve for objects with spatial extension, Proceedings of Advances in
Spatial Databases, 6th International Symposium, SSD’99, Hong Kong, China,
pp- 75-90, July 20-23, 1999.

Jiirgen Bohn & Harald Vogt, Robust Probabilistic Positioning Based on High-
Level Sensor-Fusion and Map Knowledge, Technical Report nr. 421, ETH
Zurich, Apr. 2003.

I. Getting, The Global Positioning System, IEEE Spectrum 30, 12, pp. 36-47,
December 1993.

Galileo Project Webpage,

http://europa.eu.int/comm/dgs/energy transport/galileo/index_en.htm
A. Harter & A. Hopper A New Location Technique for the Active Office, IEEE
Personal Communications 4, 5, pp. 4347, October 1997.

HeyWow Project http://wuw.heywow. com/

J. Hightower & B. Brumitt & G. Borriello The location stack: A layered model
for location in ubiquitous computing, In Proceedings of the 4th IEEE Work-
shop on mobile Computing Systems & Applications (WMCSA 2002), IEEE
Computer Society, pp. 22—28, Callicoon, NY, USA, June 2002.

Nissanka B. Priyantha & Anit Chakraborty & Hari Balakrishnan, The Cricket
location-support system, Mobile Computing and Networking, pp. 32-43, 2000.
W3C, The Resource Description Framework (RDF),
http://www.w3.org/RDF/.

K. Wendlandt & A. Ouhmich & M. Angermann & P. Robertson, Implemen-
tation of Soft Location on mobile devices, International Symposium on Indoor
Localisation and Position Finding, InLoc 2002, Bonn, Germany, 2002.

http://europa.eu.int/comm/dgs/energy_transport/galileo/index_en.htm
http://www.heywow.com/
http://www.w3.org/RDF/

	Motivation
	Related Work
	Position Representation
	Architecture and Components
	Principles
	Overview
	Plugins

	Implementation
	Probability Distribution Functions
	Modules

	Summary and Outlook

