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Abstract. We propose a new broadcast encryption scheme based on
the idea of ‘one key per each punctured interval’. Let r be the number
of revoked users. In our scheme with p-punctured c-intervals, the trans-
mission overhead is roughly r

p+1 as r grows. Our scheme is very flexible

with two parameters p and c. We may take p as large as possible if a user
device allows a large key storage, and set c as small as possible if the
storage size and the computing power is limited. As variants of the pro-
posed scheme, we further study a combination of a one-way chain and a
hierarchical ring. This combination provides a fine-grained trade-off be-
tween user storage and transmission overhead. As one specific instance,
the combination includes the subset difference (SD) scheme which is con-
sidered the most efficient one in the literature.

1 Introduction

Broadcast encryption (BE) is a cryptographic method for a center to efficiently
broadcast digital contents to a large set of users so that only non-revoked users
can decrypt the contents. In broadcast encryption, the center distributes to each
user u the set Ku of keys, called the user key set of u, in the system setup
stage. We assume that the user keys are not updated afterwards, that is, user
keys are stateless. A session is a time interval during which only one encrypted
message (digital contents) is broadcasted. The session key, say SK, is the key
used to encrypt the contents of the session. In order to broadcast a message M ,
the center encrypts M using the session key SK and broadcasts the encrypted
message together with a header, which contains encryptions of SK and the
information for non-revoked users to recover SK. In other words, the center
broadcasts

〈header ; ESK(M) 〉,
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where ESK(M) is a symmetric encryption of M by SK. Then, every non-revoked
user u computes F (Ku,header) = SK and decrypts ESK(M) with SK, where
F is a predefined algorithm. But for any revoked user v, F (Kv,header) should
not render SK. Furthermore, there should be no polynomial time algorithm that
outputs SK even with all the revoked user keys and the header as input.

The length of the header, the computing time of F and the size of a user
key are called the transmission overhead, the computation cost and the storage
size, respectively. The main issue of broadcast encryption is to minimize the
transmission overhead with practical computation cost and storage size.

The notion of broadcast encryption was first introduced by Berkovits [2]
in 1991 using polynomial interpolation and vector based secret sharing. Fiat
and Naor [7] in 1993 suggested a formal definition of broadcast encryption and
proposed a systematic method of broadcast encryption. The polynomial interpo-
lation method was improved by Naor and Pinkas [14] in 2000 to allow multiple
usage. The first practical broadcast encryption scheme was proposed in 2001 by
Naor et al. [13], called the Subset Difference (SD) method. This was improved by
Halevi and Shamir [11] in 2002 by adopting the notion of layers and thereby the
improved scheme is called the Layered Subset Difference (LSD) method. Both
SD and LSD are based on tree structure and they are the best known broadcast
schemes up to now. To be more precise, let N be the total number of users
and r be the number of revoked users. The SD scheme requires 2r transmis-
sion overhead and O(log2 N) storage size for each user. The computation cost is
only O(log N) computations of one-way permutations. The LSD scheme reduces
the storage size to O(log3/2 N) while keeping the computation cost same. But
the transmission overhead increases to 4r in LSD. For other interesting recent
articles on broadcast encryption, we refer the readers [3, 8].

Our Contribution. In this paper, we propose a new broadcast encryption
scheme based on the idea of “one key per each punctured interval”. It has been
a general belief that at least one key per each revoked user should be included
in the overhead and hence r seems to be the lower bound of the transmission
overhead in any broadcast encryption scheme with reasonable computation cost
and storage size. In our scheme with p-punctured c-intervals, however, the trans-

mission overhead is about r
p+1 + N−r

c which breaks the barrier of r, for the
first time under our knowledge if r is not too small, even when p = 1, where c
is a predetermined constant and r is not too small. Although we set c = 100 or
1000 for comparison purpose here, we can choose any c that is suitable for other
purposes. The computation cost is very cheap with only c − 1 computations of
one-way permutations. The storage size is O(cp+1), which is practical for most
user devices if p is small. Our scheme is very flexible with two parameters p
and c. If a user device allows a large key storage like set-top boxes and mobile
devices, then we may take p as large as possible to reduce the transmission over-
head, which is much more expensive. If a user device has limited storage and
computing power like smart cards and sensors, then we may set c as small as
possible. Another remarkable feature of our scheme is that it does not have to
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preset the total number of users - any number of additional users can join at
any time, which is not possible in tree based schemes.

Our idea is to put all the users on a straight line and divide the line into
subintervals of length at most c beginning and ending with non-revoked users
containing p or less revoked users in between. Then, to each of such intervals,
the center assigns just one key, which can be derived by all non-revoked users in
the interval, for decrypting the session key. For practical purpose, we introduce
a layered variance of our scheme to improve the efficiency for very small r. Com-
pared with SD and LSD, the variance beats them in the transmission overhead.
As for the the storage size, ours is better than SD when p = 0 and a little bit
worse when p ≥ 1.

Furthermore, we study a combination of a one-way chain and a hierarchical
ring to provide a trade-off between transmission overhead and keys storage size
per user. As a building block we first present a simple ring structure of which
transmission overhead is proportional to the number r of revoked users while
each user stores N keys. Then, by transforming the simple ring structure to a
hierarchical ring one recursively, we extend the basic scheme to more generalized
revocation schemes. Interestingly, our specific example of one extreme side is
structurally equivalent to SD [13] with 1+1

2 (log2 n+log n) storage size and 2r−1
transmission overhead.

Organization. The rest of this paper is organized as follows: In section 2, we
propose revocation schemes with p-punctured intervals together with efficiency
and security analysis and introduce layers to our scheme. In Section 3, we pro-
pose two revocation schemes based on a ring structure: The first one is a basic
scheme with r transmission overhead and the second one is an extension to re-
duce the transmission overhead below r. We generalize the schemes of a simple
ring structure to a hierarchical ring structure. In Section 4, we compare our
schemes with SD and LSD schemes, and give concluding remarks in Section 5.

2 The Punctured Interval Scheme π

A broadcast encryption scheme involves the center (the message sender) and
the set of users (the receivers). Our revocation method is based on a so-called
Subset-Cover framework proposed by Naor et. al [13]. It consists of three phases
as follows :

• The initialization phase : the center provides each user with his/her secret
keys that will be used when computing his/her partition key K.

• The broadcast phase : when the center wants to transmit a message M , it
partitions the set of all privileged users into disjoint subsets S1, ..., Sm and
computes the partition key Ki corresponding to each Si, and then broadcasts

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm
(SK) ; ESK(M) 〉,

where infoi is the information on Si, SK is the session key, and E , E are
symmetric encryption functions. The infoi’s and EKi

(SK)’s together form
the header.
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• The decryption phase : each user first finds the partition Si where he/she
belongs from infoi’s, computes the partition key Ki using his/her secret
keys, and then decrypts SK and M in order.

2.1 Punctured Intervals

Assume that L be a straight line with N dots (users) on it, where N is the number
of total users. In our scheme, each user is indexed by an integer k ∈ [1, N ] and
he/she is represented by the k-th dot, denoted by uk, in the line L. Let p ≥ 0
and c > 0 be integers. By a p-punctured c-interval we mean a subset of L which
contains c or less consecutive users starting from and ending at non-revoked users
and containing p or less revoked users. Let S(p ; c) be the set of all p-punctured
c-intervals.

In each session, the p-punctured c-intervals are to be determined under the
following rule :

• The first p-punctured c-interval starts from the leftmost non-revoked user,
and each of the following starts from the first non-revoked user after the last
non-revoked user of the previous.

• Each p-punctured c-interval contains the maximal possible number of users.

Fig.1 illustrates how to make p-punctured c-intervals with an example when
p = 1, c = 6 :

� � � � � � � � � � � � � � � � � � � ��� �� �� �� ��

� � � � � �� �

Fig. 1. 1-punctured 6-intervals

The p-punctured c-interval starting from ui and ending at uj with ux1 , . . . , uxq

revoked users is denoted by Pi,j;x1,...,xq
or Pi,j;X in short for X = {x1, . . . , xq},

where 1 ≤ j − i + 1 ≤ c, 0 ≤ q ≤ p, and i < x1 < · · · < xq < j if there are
revoked users.

2.2 Punctured Interval Scheme (p ; c)-π

In this subsection, we propose the punctured interval broadcast encryption
scheme (p ; c)-π (PI - Punctured Interval). We assign just one key to each p-
punctured c-interval, which can be easily derived by all non-revoked users in
that interval, and construct key chains using one-way permutations in order to
reduce the storage size.

Key Generation. Let ht : {0, 1}� → {0, 1}� be one-way permutations for
t = 0, 1, . . . , p, where � is the key length. To assign one key to each p-punctured
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interval, we randomly choose N keys K1,1, K2,2, . . . , KN,N to be given to
u1, . . . , uN , respectively. From each Ki,i the center constructs the one-way key
chains under the following rule : For any possible p-punctured c-interval P start-
ing from ui given,

• The one-way key chain consists only of the keys of all non-revoked users in
P . There are no keys of the revoked users in the chain.

• For any non-revoked user uk ∈ P , if the next user uk+1 ∈ P is also non-
revoked, then just apply h0 to the key of uk to obtain the key of uk+1.

• If the next t users are revoked and the user uk+t+1 ∈ P is non-revoked, then
apply ht to the key of uk to obtain the key of uk+t+1, where 1 ≤ t ≤ p.

The following example illustrates how to construct the key chain of a given
punctured interval (with p = 10, c = 20) :

� � � � � � � � � � � � � � � � � � � ��� �� �� �� �� �� �� �� �� ��

� �

h0

� �

h3

� �

h2

� �

h0

� �

h0

� �

h1

� �

h4

��

h0

� �

h0

Fig. 2. The key chain of a 10-punctured 20-interval

In the key chain of P = Pi,j;x1,...,xq
, the key of a non-revoked user uk ∈ P is

denoted by Ki,k;x1,...,xt
, where i < x1 < · · · < xt < k < xt+1 < · · · < xq and

0 ≤ t ≤ q ≤ p. For examples,

K5,11 = h6
0(K5,5) ; K5,11;7 = h3

0h1h0(K5,5) ; K4,11;5,6,7,9,10 = h2h3(K4,4) ;
K3,11;4,5,7,8 = h2

0h
2
2(K3,3) ; K3,11;4,5,6,7,9 = h0h1h4(K3,3) ; . . . .

The center assigns these keys to users so that the user uk receives Kk,k and
all possible Ki,k;x1,...,xt

’s, where i < x1 < x2 < · · · < xt < k with 0 ≤ t ≤ p and
2 ≤ k − i + 1 ≤ c. Fig. 3 describes the key assignment in the scheme (3 ; 5)-π
for u5 :

Encryption. For each session, the center divides L into disjoint p-punctured
c-intervals P1, . . . , Pm ∈ S(p ; c), whose union covers all the non-revoked users.
Let P = Pi,j;x1,...,xq

be one of Pµ’s. The last key Ki,j;x1,...,xq
of the key chain

corresponding to P is called the interval key of P . Let’s denote the interval
key of Pµ by Kµ for each µ = 1, 2 . . . ,m, just for convenience. Then the center
broadcasts :

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm
(SK) ; ESK(M) 〉,

where infoµ is information on Pµ, the µ-th interval starting from uiµ
and ending

at ujµ
with qµ revoked users. For each µ, infoµ consists of iµ, �µ, �µ,1, . . . , �µ,qµ

,
where �µ = jµ − iµ + 1 and �µ,1, . . . , �µ,qµ

are the distances from uiµ
to the
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h1

h1

h2

h2
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Fig. 3. One-way key chains starting from K1,1, where c = 5

first, . . . , to the last revoked users of Pµ, respectively. The starting position
iµ can be represented by log N bits and the �’s are at most log c bits. So the
size of all info’s is m(log N + p log c), which will be ignored when computing
the transmission overhead because it is negligible compared to the size of all
EK(SK)’s.

Decryption. Receiving the encrypted message, each non-revoked user uk first
locates the punctured interval that he/she belongs using the info’s. Let the punc-
tured interval be Pi,j;x1,...,xq

, where i ≤ k ≤ j, k �= x1, . . . , xq. Then uk can find
Ki,j;x1,...,xq

as follows:

• Find t for which xt < k < xt+1, where 0 ≤ t ≤ q. Here, t = 0 and t = q
mean that there is no revoked user before and after uk, respectively.

• Choose Ki,k;x1,...,xt
from the assigned user keys.

• Starting from Ki,k;x1,...,xt
, apply one-way permutation hi’s under the rule

described in Key Generation until the second subscript reaches to j.
• The resulting key is then Ki,j;x1,...,xq

.

With this, uk decrypts EKi,j;x1,...,xq
(SK) and ESK(M) to obtain the session

key SK and the message M , respectively, in order.

2.3 Efficiency

We analyze efficiency - the transmission overhead (TO), the computation cost
(CC) and the storage size (SS) - of the scheme (p ; c)-π.

The transmission overhead of the scheme (p ; c)-π is

TO(p ; c)(N, r) =
⌊

r

p + 1

⌋
+

⌈
N − (p + 2)�r/(p + 1)	

c

⌉
, (1)

where N and r are the total number and revoked users, respectively. Especially,
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TO(1 ; c)(N, r) = �r/2	 +
⌈

N − 3�r/2	
c

⌉
.

This occurs when ◦×× is repeated from the leftmost user and then the remaining
privileged users are on the right, where ◦ and × denote a privileged user and
a revoked user, respectively. It is not hard to prove (1), but we omit the proof
because it is long and tedious.

It is trivial that the computation cost CC(p;c) is at most c− 1 computations
of one-way permutations, which is independent of N and r. The storage size of
each user can be easily computed as follows:

SS(p ; c) =
p∑

k=0

(
1

(k + 1)!

k+1∏
i=1

(c − i)

)
+ 1,

which is also independent of N and r.

2.4 Security

Note that even a non-revoked user cannot compute the interval keys of the other
punctured intervals. Those who do not belong to any punctured interval are the
revoked ones and they can never access to the session key. Neither those revoked
users who belong to punctured intervals can access to their interval keys because
they cannot invert the one-way permutations.

The only way to compute the interval key Ki,j;x1,...,xq
of Pi,j;x1,...,xq

is to
obtain one of the keys in the key chain. However, no revoked user is assigned a
key in the key chain and hence they cannot compute the interval key even though
they all collude. Furthermore, the interval keys of previous sessions when the
user was not revoked do not help at all in the present session, in which he/she
is revoked, because the revocation of him/her results in a totally new key chain.

2.5 Layered Punctured Interval Scheme

The scheme (p ; c)-π is less efficient than SD when r is small. This is mainly
because of long intervals consisting of non-revoked users which require several
keys while covering no revoked users at all. To deal with this case, we introduce
another set of user keys, each of which covers a long interval. To reduce the
number of keys, we restrict the starting points of long intervals to some special
nodes (users) on the line such that the distance between every neighboring nodes,
called node-distance is c. This process can be repeated by d−1 more times taking
special nodes with node distances are c2, c3, . . . , cd−1 or cd, respectively, for a
positive integer d. We call this scheme by d-layered p-punctured c-interval scheme
or the (p ; c)-πd scheme.

Layered Structure. As in the (p ; c)-π scheme, the set of all N users are ar-
ranged on a long line L. Given a positive integer d (< logc N − 1), we consider
d layers above the line L. The first layer L1 consists of N1 = �N

c � − 1 users
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u1, uc+1, . . . , u(N1−1)c+1. Inductively, the t-th layer Lt consists of Nt = �Nt−1
c �−1

users u1, uct+1, . . . , u(Nt−1)ct+1 for 1 < t ≤ d. We define layered intervals of
length ct in the layer Lt by

LP
(t)
i = {uk|(i − 1)ct + 1 ≤ k ≤ ict}. (2)

Key Assignment. First, the center assigns a random key LK
(t)
i to LP

(t)
i for

each i and gives it to all members of LP
(t)
i . Next, it constructs a one-way key

chain starting from LK
(t)
i . Let g1, . . . , gd : {0, 1}� → {0, 1}� be one-way permu-

tations and h = h0 in (p ; c)-π. Given k with ict ≤ k ≤ (i + c − 1)ct, LK
(t)
i,k is

defined by

LK
(t)
i,k = he0ge1

1 · · · get
t (LK

(t)
i ) (3)

where k − ict = etc
t + et−1c

t−1 + · · ·+ e1t + e0 (0 ≤ ei < c) is a c-ary expansion
of k − ict.

Let us consider the layered keys for the user uk in the t-th layer. Assume
k = etc

t + · · ·+ e1c + e0 for 0 ≤ e0, e1, . . . , et−1 < c and et ≥ 0. Then the center
takes j with et + 1 − (c − 1) ≤ j ≤ et + 1 and gives to the user uk all the user
keys LKj;kτ

where k0 = e0 and kτ = �( k
cτ + 1)	cτ for 1 ≤ τ ≤ t.

The center assigns these keys to the user uk along with the interval keys for
the scheme (p ; c)-π. Hence the total number of keys for each user is

SS(p ; c) +
d∑

t=1

{(c − 1)(t + 1) + 1} = SS(p ; c) +
cd(d + 3) − d(d + 1)

2
.

Encryption/Decryption. If there is no layered interval consisting of all non-
revoked users, the center encrypts the session key just as in the scheme (p ; c)-π.
Otherwise, we can save the transmission overhead by using layered keys. First
the center marks all the layered intervals at each layer which has at least one
revoked user as revoked intervals. Next, it finds the leftmost non-revoked interval,
say LP

(d)
i , in the d-th layer. Then the session key is encrypted by LK

(d)
i,k , where

uk+1 is the first revoked user after uicd with k ≤ (i+c)cd. The center then marks
all the users from u(i−1)ct+1 to uk and the layered intervals containing at least
one of them revoked. This process is repeated for the next non-revoked interval.
If there is no non-revoked interval in the d-th layer, go to (d − 1)-st layer and
repeat the same procedure and so on. Finally, if all layered intervals at each layer
are revoked, then the scheme (p ; c)-π is applied for the remaining non-revoked
users.

Note that each non-revoked user uk can decrypt the session key by an interval
key of (p ; c)-π or a layered key. In order to obtain the key (to decrypt the session
key) it costs at most c − 1 and t(c − 1) computations of one-way permutations,
respectively. Hence the computation cost is at most d(c − 1) computations of
one-way permutations.
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Transmission Overhead. First we estimate the transmission overhead for
(p ; c)-π1. If there is no revoked user, then �N

c2 � layered intervals cover entire
straight line L. By inserting one revoked user to an interval, the interval is di-
vided to at most 3 intervals including punctured or long intervals. So the trans-
mission overhead is at most �N

c2 � + 2r. Trivially, the transmission overhead of
this scheme cannot be larger than that of punctured interval scheme. So we can
conclude that the transmission overhead is at most �N

c2 � + 2r for r ≤ 2
3

N(c−1)
c(c+1)

or � r
2�+

⌈
N−�3r/2�

c

⌉
otherwise. The transmission overhead of (p ; c)-πd for d ≥ 2

can be similarly estimated.

3 Revocation Scheme with a Ring Structure

In this section, we present revocation schemes using combination of (punctured)
one-way chains and ring structures. We can further reduce user key storage using
a hierarchical ring structure. In the following schemes we use relatively simple
key assignment applying one permutation to a random label instead of several
one-way permutations.

3.1 Revocation Scheme with a Simple Ring Structure

Initially we assume that N nodes (users) are arranged on a ring in a clockwise
direction. We denote by ui the i-th node from the initial node in a clockwise
direction and identify ui and uj if and only if i ≡ j (mod N). For two nodes
ui and uj , we set S[i,j] = {ui, ui+1, · · · , uj−1, uj}. Let C[i,j] denote a one-way
chain consisting of all users in S[i,j] that starts from ui and ends at uj . For a
given one-way permutation h : {0, 1}� → {0, 1}� and an input value sd ∈{0, 1}�,
the chain-value of C[i,j] is defined by the value hk(sd), which is computed by
applying h to sd iteratively k(=j − i + 1 mod N) times.

Key Assignment. First, to each node ui on the ring, a random and indepen-
dent label Li ∈{0, 1}� is selected and assigned. Then the center computes hk(Li),
(1≤k≤N − 1) and assigns hk(Li) to each node ui+k. Finally the center provides
the user ut with a set of N keys,

{GSK0, h
1(Lt−1), h2(Lt−2), · · · ,hN−1(Lt−(N−1)=t+1 mod N )},

where GSK0 is an initial group session key.

Encryption. For a given set of revoked users R = {ui1 , ui2 , · · · , uir
}, the center

partitions the remaining legal users into r subsets S[i1+1,i2−1], S[i2+1,i3−1], · · · ,
S[ir−1+1,ir−1], S[ir+1,i1−1]. If uik

and uik+1 in R are adjacent on the ring, then
there is no privileged user between uik

and uik+1 and the subset S[ik+1,ik+1−1] is
empty. For example, if four users u3,u6,u7,u11 are revoked, the set of remaining
privileged users is partitioned into 3 non-empty subsets S[4,5], S[8,11] and S[12,2]

(see Fig. 4). For each non-empty subset S[i,j], the center assigns a one-way chain
C[i,j] and computes its chain-value hk(Li−1) where k=j− i+1 mod N . Because
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there are r arcs in the worst case and a one-way chain is assigned to each arc,
the transmission overhead is r.

Decryption. Upon receipt of a broadcast message, each privileged user ut finds
a subset S[i,j] including ut from the information of indices of revoked users.
We note that the subset including ut is unique. To find the subset S[i,j], ut

performs a binary search on the sequence of indices of the revoked users. Then,
by using a value KV=h(t−i+1) mod N (Li−1) given initially, ut computes a key
hj−i+1 mod N (Li−1) by applying h to KV (j−t mod N) times. Each user should
compute function h, in the worst case, N − 1 times.

Basically revoked users are cannot obtain useful any information to decrypt
the encrypted session key because of one-wayness of h. However, we should show
that the basic scheme is resilient to collusion of any set of revoked users. We can
show that the security of the basic scheme is as strong as that of the SD method
in [13] by using the following lemma.

Lemma 1. The above key assignment satisfies the key-indistinguishability con-
dition [13] under the pseudo-randomness of a given function h.

By using a standard hybrid argument on the length of one-way chains we can
prove the lemma under the pseudo-randomness of a given function h as in [13].
We omit the proof here.
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Fig. 4. Revocation in OFBE(N :1) and OFBE(N :2) for N=16

Now we present a method to further reduce the number of transmission mes-
sages in the basic scheme below r. The basic idea is to cover several subsets of
privileged users separated by revoked users in the basic scheme by using only one
key. This makes the number of messages transmitted drastically goes below r.
For a set of users D, let S[i,j],D denote a difference set S[i,j]\D, i.e., {u | u∈S[i,j]

and u/∈D}. We define a ‘jumping’ one-way chain C[i,j],D for S[i,j],D such that, for
two nodes ui and uj (ui �=uj) and a subset D={uk1 ,...,uks

} of S[i,j], it starts from
ui, proceeds in a clockwise direction, but jumps over the nodes uk1 ,...,uks

, and
ends at uj . First we concentrate on the case that D contains only one revoked
user.
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Key Assignment. To provide a user with an initial key-set, the center performs
the followings : First the center performs the key assignment in the basic scheme.
Next, for every pair of (potential revoked) users ui and uj not adjacent each other
on the ring, the center additionally chooses a random and independent label Li,j

(1≤i<j≤N). We exclude the cases that ui and uj are adjacent on the ring since
those cases are covered by one-way chains of the basic scheme. Then the center
computes chain-values hk(Li,j), (1≤k≤N − 1) and assigns it to each node ui+k,
(1≤k≤N − 1) except ui and uj . In this case, the total number of the keys which
a user should store is N+

(
N−1

2

)−(N −2) =
(
N−1

2

)
+2 = (N−1)(N−2)

2 +2 since the
number of keys assigned by the basic scheme is N , the number of cases choosing
two different users in the remaining N − 1 users is

(
N−1

2

)
, and the number of

cases covered by keys assigned in the basic scheme is N − 2.

Encryption. To revoke users, the center constructs one-way chains as follows.
Starting from any remaining user in a clockwise direction on the ring, the first
one-way chain proceeds until it meets the first revoked user ui1 . If the next
revoked users ui2 in a clockwise direction is adjacent to ui1 , the chain ends at
ui1−1, just before ui1 . Otherwise the chain jumps over ui1 and continues until
it meets ui2 , and ends at ui2−1, just before ui2 . This process is repeated until
all remaining users are covered by one-way chains. For example as in Fig. 4,
suppose that users u4, u7, u11, u12, and u15 are to be revoked. Starting from u5,
the first one-way chain proceeds in clockwise directions, jumps u7, and ends at
u10. The second one-way chain starts at u13, jumps over u15, and ends at u3.
Hence all remaining users are covered by two chains in this example.

By applying the method for r revoked users {ui1 ,...,uir
}, the center broadcasts

at most � 1
2 · r	+1 encrypted keys where �·	 is a floor function. If r is even, 1

2 · r
one-way chains sufficiently cover the remaining privileged users at worst case. If
r is odd then we need to cover a last subset S[uir+1,ui1−1], which is not covered
by directly assigning ‘jumping’ one-way chain. In this case, we use a one-way
chain C[ir+1,i1−1] of the basic scheme.

Extension. The above cover strategy can be generalized, i.e., naturally ex-
tended to cover k subsets by only one key. We denote this method by OFBE(N :k)
where N is the number of users.

In OFBE(N :k), the cover strategy is similar to that of OFBE(N :2). Starting
from any remaining user u in a clockwise direction on the ring, the center jumps
k − 1 revoked users until it meets the k-th revoked user uik

. Next, the center
goes back in counterclockwise direction to find the first remaining user u′. The
first one-way chain starts from u and ends at u′, jumping revoked users between
u and u′ in a clockwise direction. This process is continued until all remaining
users are covered. All remaining users are covered by at most � 1

k · r	+ 1 chains.
To assign an initial key-set to each user, the center generates a label LA for

every subset A = {ui1 ,...,uik
} with k users. Then the center computes ht(LA),

(1≤t≤N − 1) and gives it to node ui1+t not in A. To avoid double key as-
signment, we exclude the cases which can be covered by a key generated in
OFBE(N :j) where 0<j<k. Hence the number of possible selections is Num(N ,k)
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=
(
N−1

k

)−(
N−1
k−1

)
+1 where

(
N−1

0

)
=0. In OFBE(N :k), a key assignment method

is performed recursively. Hence the number of keys which a user should store in
OFBE(N :k) is #OFBE(N :k)= #OFBE(N :k− 1)+ Num(N ,k) =

(
N−1

k

)
+k where

#OFBE(N :j) is the number of keys for each user in OFBE(N :j).

3.2 Revocation Scheme with a Hierarchical Ring Structure

In this subsection we generalize the basic scheme OFBE(N :1) by extending a
simple ring structure to a hierarchical one. A hierarchical ring R is recursively
defined such that there is an outmost ring R0 in level 1 having nodes on the
ring, each node on R0 has children arranged on a ring in level 2, and each node
in level 2 again has children on a ring in level 3, and so on. A node which does
not have any child is called a leaf. The depth of a hierarchical ring is the highest
level of a leaf in the ring. A hierarchical ring R is called w-ary if each node in R
has w children.

Underlying Scheme of Our Generalization. For our generalization, we first
describe an underlying revocation scheme with a relatively simple hierarchical
ring R with depth 2 such that there are two nodes u1 and u2 in level 0 (i.e.,
on the outmost ring). Each ub for b ∈ {1, 2} has m children {ub.1, .., ub.m} on
a sub-ring Rb, where ub.j denotes the j-th user from ub.1 on ring Rb. Hence the
number of users in R are 2 · m. We denote this scheme by HOC(2,m).

Let Sb̄,[b.i,b.j] denote a union set Rb̄ ∪ S[b.i,b.j], i.e., {u|u∈S[b.i,b.j] and u∈Rb̄}
where b̄=2(b mod 2). We define a simple ‘hierarchical’ one-way chain Cb̄,[b.i,b.j]

for Sb̄,[b.i,b.j] such that it starts from a node ub̄, goes through children ub.i,ub.i+1

,..., ub.j−1 of ub in a clockwise direction and ends at ub.j on Rb. Cb̄,[b.i,b.j] is used
to cover users on two separated rings by one key, i.e., all users on Rb̄ and some
users on Rb. For example as in Fig. 5, suppose that u1.6, u1.11, and u1.15 on
R1 are to be revoked. the center partitions the remaining privileged users into
disjoint subsets R2∪S[1.7,1.10], S[1.12,1.14] and S[1.16,1.5]. Then the center assigns
one-way chains C2,[1.7,1.10], C[1.12,1.14], C[1.16,1.5] to those subsets, respectively.

Key Assignment. To exploit the previous hierarchical cover strategy using two
types of one-way chains, two types of labels are selected by the center initially:
One is a label used in the basic scheme. The other is a label Lb associated to a
node vb, which is used to compute a chain-value corresponding to a hierarchical
one-way chain. In this case, we use a cryptographic pseudo-random sequence
generator G:{0, 1}� → {0, 1}m�. We denote by G(L)i the i-th output block of
length � of G on L. A similar function which triples an input is used in the SD
scheme [13] to achieve a similar purpose.

The center provides a user ub.t with n keys by using the following key assign-
ment method: First the center performs the key assignment of the basic scheme to
cover only privileged users in one sub-ring of m users. That is, for each b ∈ {1, 2}
and ub.i ∈ Rb, a label Lb.i ∈{0, 1}κ is selected. Then the center computes hk(Lb.i),
(1≤k≤m−1) and assigns it to ub.i+k. Next, for each b ∈ {1, 2}, a label Lb ∈{0, 1}�

is selected. Then the center computes hk(G(h(Lb))i), (1≤k≤m − 1) and assigns
it to ub̄.i+k. Finally the center provides ub.t with a set of the following keys;
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Fig. 5. Revocation in HOC(2, m)

{ GSK0, h(Lb.j−1), h2(Lb.j−2), · · · , hm−1(Lb.(j−(m−1)=j+1 mod m)),
h(Lb),h(G(h(Lb))j−1),h2(G(h(Lb))j−2),· · · ,hm−1(G(h(Lb))j−(m−1)=j+1 mod m)}

Encryption. To revoke users, the center covers the remaining legal users as fol-
lows: If all revoked users are included in only one sub-ring Rb, the center generates
one-way chains Cb̄,[b.i1+1,b.i2−1] and {C[b.i2+1,b.i3−1],· · · ,C[b.irb+1,b.i1−1]}. Other-
wise, the center performs the revocation method of the basic scheme on each sub-
ring. Then the center encrypts a group session key GSK by using chain-values as
keys and broadcasts the ciphertexts. In particular, for a chain-value of the hierar-
chical one-way chain Cb̄,[b.i,b.j], the center computes hj−i+1 mod m(G(h(Lb))i−1).
The number of messages to be transmitted is at most r as in the basic scheme.

Security. The security of this scheme depends on the association of the secu-
rities of two functions, h and G. However, without considering the association,
we can use one function instead of two independent functions. In this case, for
the expansion of labels, we can define the output of h as the first output block
of G, namely, h(L)=G(L)1 for L∈{0, 1}�. Using the similar idea in [13] we can
prove the security under the pseudo-randomness of G.

Generalization. Naturally, we can extend the previous HOC(2,m) by allowing
more levels and more nodes in each level. In general schemes the center uses a
hierarchical one-way chain traversing nodes in many levels, which starts from a
node of level d and goes through some nodes of the same level in a clockwise
direction and ends at uj , and comes down to a children node of uj+1 in level d+1
and iterates this process. For space limitation, we omit the concrete explanation
of the general scheme.

One important thing is that there is a trade-off relation between transmission
overhead and keys stored at a user. Using the deepest hierarchical ring struc-
ture such as a complete binary ring of depth log2 n, we gain reduction in user
storage up to log2

2 n+log2 n
2 + 1 while the transmission overhead increases up to

2r. Interestingly, the revocation scheme for a binary (2-way) ring is structurally
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equivalent to SD based on a binary tree proposed by Naor et. al [13]. The forms
of subsets to be covered in both schemes are equivalent, since a binary ring is
structurally equivalent to a binary tree.

To further reduce the transmission overhead, we can use ‘jumping’ hierarchi-
cal one-way chains which jump potential revoked users and cover several subsets
of privileged users separated by revoked users at a time. Our generalization pro-
vides a generic method for any application in terms of setting specific values for
parameters to achieve a desirable trade-off.

3.3 Specific Revocation Scheme

In this section we present a specific revocation scheme where the transmission
overhead is less than r while storage requirement per user is reasonably low.
First we notice that different OFBE(N :k) schemes can be independently com-
bined with revocation schemes using hierarchical one-way chains. In particular
OFBE(m:2) can be directly applied to each sub-ring Rb of HOC(2,m), which
contains m=N

2 users. In this case, the number of keys which a user should store
reduces from N2−3N+6

2 to m2−m+6
2 while the transmission overhead is still at

most � 1
2 · r	+1. We denote this method by HOC(2,[m:2]).

Lemma 2. In HOC(2,[m:2]), the number of keys stored by a user is m2−m+6
2

and the transmission overhead is at most � 1
2 · r	+1, for N = 2m.

Though, in HOC(2,[m:2]), the number of keys storage per user is reduced
while the number of transmission messages is still at most � 1

2 ·r	+1, the method
is still not applicable for a large number of group users. To reduce user storage
further with slight increase in transmission complexity, we can use divisional
approach as follows: First partition a group of N (=2m·s) users into s sub-
groups and then apply HOC(2,[m:2]) to each sub-group of 2m users where m
is a predetermined constant. We denote this method by HOC(2,[m:2])p. In this
case, the transmission overhead is � 1

2 ·r	+ N
2m at worst case and each user should

store m2−m+6
2 keys.

4 Comparison

Table 1 shows the complexity of the storage sizes, the transmission overhead
and the computation costs of our schemes, SD and LSD when N = 108 and r
is 0.1, 0.5, 1, 5, 10 and 20% of N . In the table, we assume that the size of a user
key is 128 bits, which is considered reasonably secure, currently.

Figure 6 shows the comparison of the worst-case transmission overheads by
graphs when the revocation rate ranges from 0% to 3%. Among the graphs, the
dotted line represents the transmission overhead of the scheme (1 ; 100)-π1. The
dotted graph is very close to that of SD for small r. It has steeper slope than
the graph of (1 ; 100)-π, but a lower y-intercept at �N

c �. As we mentioned above,
the layered π scheme improves the transmission overhead when the revocation
rate is small. For large r, it has the same transmission overhead as that of the
scheme (p ; c)-π.
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Table 1. Examples when N = 108

Scheme Storage TO (Mbits) CC

r revoked (KBytes) 0.1% 0.5% 1% 5% 10% 20%

(0 ; 100)-π 1.60 141 191 253 755 1380 2640 100

(1 ; 100)-π 79.2 134 159 190 438 749 1370 100

(0 ; 100)-π1 4.80 26.9 129 253 755 1380 2640 198

(1 ; 100)-π1 82.4 26.9 129 190 438 749 1370 198

HOC(2, [100 : 2])p 79.2 70.4 96 128 384 704 1344 100

HOC(2, [50 : 2])p 19.6 134.4 160 192 448 768 1408 50

SD 5.8 25.6 128 256 1280 2560 5120 27

LSD 2.3 51.2 256 512 2560 5120 10240 27
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Fig. 6. TO for N = 1 · 108 in the worst case

The transmission overhead of HOC(2,[50:2])p or HOC(2,[100:2])p is relatively
larger than that of SD at initial interval where the number r of revoked users is
smaller than 0.75 % of the total users. But, except this interval, the transmission
overhead of HOC(2,[50:2])p becomes, at worst case, about 1

3.5 of the transmission
overhead of SD. This should be a good trade-off in most applications since the
number of initial messages is relatively small. The number of keys per user in
HOC(2,[50:2])p is about 3.5 times as many as that of SD as the number of
revoked users increases. But this difference may be acceptable in many practical
applications.

5 Conclusion

In this paper, we proposed efficient broadcast encryption schemes based on lin-
ear and circular structures. Introducing the idea of punctured one-way chain to
these strucutres, we could reduce the transmission overhead below r. Particu-
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larly, our specific schemes have about 1/3 transmission overhead than SD while
maintaining the computation cost and the storage size in a reasonable bound.

Moreover our methods provide many flexibility on the system efficiency. The
system can be optimized to have best efficiency for any of the three parameters
of broadcast encryption the transmission overhead, the computation cost and
the storage size.
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