
Bitmap Index-Based Decision Trees

Cécile Favre and Fadila Bentayeb

ERIC - Université Lumière Lyon 2,
Bâtiment L, 5 avenue Pierre Mendès-France

69676 BRON Cedex – FRANCE
{cfavre, bentayeb}@eric.univ-lyon2.fr

Abstract. In this paper we propose an original approach to apply data
mining algorithms, namely decision tree-based methods, taking into ac-
count not only the size of processed databases but also the processing
time. The key idea consists in constructing a decision tree, within the
DBMS, using bitmap indices. Indeed bitmap indices have many useful
properties such as the count and bit-wise operations. We will show that
these operations are efficient to build decision trees. In addition, by us-
ing bitmap indices, we don’t need to access raw data. This implies clear
improvements in terms of processing time.

Keywords: Bitmap indices, databases, data mining, decision trees,
performance.

1 Introduction

Mining large databases efficiently has been the subject of many research studies
during the last years. However, in practice, the long processing time required by
data mining algorithms remains a critical issue. Indeed, traditional data min-
ing algorithms operate on main memory, which limits the size of the processed
databases. There are three approaches to overcome this limit. The first way
consists in preprocessing data by using feature selection [11] or sampling [4, 18]
techniques. The second way is to increase the scalability, by optimising data
accesses [6, 15] or algorithms [1, 7]. The third way consists in integrating data
mining methods within DataBases Management Systems (DBMSs) [5]. Many
integrated approaches have been proposed. They usually use SQL extensions for
developing new operators [8, 12, 16] or new languages [9, 10, 19]. This trend has
been confirmed with the integration of data mining tools in commercial solutions
[13, 17], but these are real ”black boxes” requiring also the use of Application
Programming Interfaces (APIs).

In opposition to these different solutions, recent works have proposed to in-
tegrate decision tree-based methods within DBMSs, using only the tools offered
by these latter. The analogy is made between building successive partitions,
representing different populations, and successive relational views modeling the
decision tree [2]. Building views tend to increase processing time due to multiple
accesses. This can be improved by using a contingency table as proposed in [3].

M.-S. Hacid et al. (Eds.): ISMIS 2005, LNAI 3488, pp. 65–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



66 C. Favre and F. Bentayeb

Instead of applying data mining algorithms to the training set, we apply them to
the contingency table which is much smaller. In this paper, we propose to improve
processing time by reducing not only the size of the training set, but also the data
accesses. Indeed, our approach is to use bitmap indices to represent the training
set and apply data mining algorithms on these indices to build our decision tree.
The population frequencies of a given node in the decision tree are obtained by
applying counting and low-cost boolean operations on selected bitmap indices.
To run these operations, the DBMS does not need to access raw data. Thus, in
opposition to the integrated approaches proposed in the literature, our approach
presents three advantages: (1) no extension of the SQL language is needed; (2)
no programming through an API is required and (3) no access data sources is
necessary. To validate our approach, we implemented the ID3 (Induction De-
cision Tree) method [14] as a PL/SQL stored procedure, named ID3 Bitmap.
To prove that our implementation of ID3 works properly, we successfully com-
pared the output of our procedure with the output of an existing and validated
data mining in-memory software, Sipina [20]. Moreover, we showed that with
bitmap indices we did not have a size limit when dealing with large databases
as compared to in-memory software, while obtaining linear processing times.

The remainder of this paper is organized as follows. First, we present the
principle of bitmap indices in Section 2. In Section 3, we present our bitmap-
based approach for decision tree-based methods. Section 4 details our imple-
mentation of ID3 method, presents the experimental results and the complexity
study. We finally conclude this paper and provide future research directions in
Section 5.

2 Bitmap Indices

A bitmap index is a data structure used to efficiently access large databases.
Generally, the purpose of an index is to provide pointers to rows in a table
containing given key values. In a common index, this is achieved by storing a
list of rowids for each key corresponding to the rows with that key value. In
a bitmap index, records in a table are assumed to be numbered sequentially
from 1. For each key value, a bitmap (array of bits) is used instead of a list
of rowids. Each bit in the bitmap corresponds to an existing rowid. If the bit
is set to ”1”, it means that the row with the corresponding rowid contains
the key value ; otherwise the bit is set to ”0”. A mapping function converts
the bit position to an actual rowid, so the bitmap index provides the same
functionality as a regular index even though it uses a different representation
internally.

2.1 Example

To illustrate how bitmap indices work, we use the Titanic database as an exam-
ple. Titanic is a table containing 2201 tuples described by four attributes Class,
Age, Gender and Survivor (Table 1). A bitmap index built on the Survivor
attribute is presented in Table 2.



Bitmap Index-Based Decision Trees 67

Table 1. Titanic Database

Class Age Gender Survivor

1st Adult Female Yes
3rd Adult Male Yes
2nd Child Male Yes
3rd Adult Male Yes
1st Adult Female Yes
2nd Adult Male No
1st Adult Male Yes
Crew Adult Female No
Crew Adult Female Yes
2nd Adult Male No
3rd Adult Male No
Crew Adult Male No
... ... ... ...

Table 2. Survivor Bitmap Index

Rowid .. 12 11 10 9 8 7 6 5 4 3 2 1

Survivor No .. 1 1 1 0 1 0 1 0 0 0 0 0
Yes .. 0 0 0 1 0 1 0 1 1 1 1 1

2.2 Properties

Bitmap indices are designed for efficient queries on multiple keys. Hence, queries
are answered using bit-wise operations such as intersection (AND), and union
(OR). Each operation takes two bitmaps of the same size and the operator is
applied on corresponding bits. In the resulting bitmap, every ”1” bit marks the
desired tuple. Thus counting the number of tuples is even faster. For some select
queries ”SELECT COUNT()...WHERE ... AND ...”, those logical operations
could provide answers without returning to data sources. In addition to standard
operations, the SQL engine can use bitmap indices to efficiently perform special
set-based operations using combinations of multiple indices. For example, to find
the total number of ”male survivors”, we can simply perform the logical AND
operation between bitmaps representing Survivor=”Yes” and Gender=”Male”,
then count the number of ”1” (Table 3).

Table 3. Bitmap(Survivor=”Yes”) AND Bitmap(Gender=”Male”)

Rowid .. 12 11 10 9 8 7 6 5 4 3 2 1

Survivor=”Yes” .. 0 0 0 1 0 1 0 1 1 1 1 1
Gender=”Male” .. 1 1 1 0 0 1 1 0 1 1 1 0

AND .. 0 0 0 0 0 1 0 0 1 1 1 0



68 C. Favre and F. Bentayeb

3 Bitmap-Based Decision Trees Methods

Induction trees are among the most popular supervised data mining methods
proposed in the literature. They may be viewed as a succession of smaller and
smaller partitions of an initial training set. They take as input a set of objects
(tuples, in the relational databases vocabulary) described by a collection of pre-
dictive attributes. Each object belongs to one of a set of mutually exclusive
classes (attribute to be predicted). Induction tree construction methods apply
successive criteria on the training population to obtain these partitions, wherein
the size of one class is maximized. In the ID3 algorithm, the discriminating
power of an attribute for segmenting a node of the decision tree is expressed by
a variation of entropy and more precisely, its entropy of Shannon.

3.1 Principle

In this paper, we propose to integrate decision tree-based methods within DBMSs.
To achieve this goal, we only use existing structures, namely, bitmap indices, that
we exploit through SQL queries. Bitmap indices improve select queries perfor-
mance by applying count and bit-wise logical operations such as AND. This type
of queries coincides exactly to those we need to build a decision tree and more
precisely to define the nodes’ frequencies. Indeed, as we have shown in Table 3,
to find the total number of the ”male survivors”, SQL engine performs logical
AND and COUNT operations onto bitmap indices and gets the result. In the
case of a decision tree-based method, this query may correspond to a segmenta-
tion step for obtaining the population frequency of the class Survivor=”Yes” in
the node Gender=”Male”.

To show that our approach is efficient and relevant, we introduced the use of
bitmap indices into the ID3 method. This induces changes in the computation
of the information gain for each predictive attribute. Thus, in our approach,
for an initial training set, we create its associated set of bitmap indices for
predictive attributes and the attribute to be predicted. Then, the ID3 algorithm
is applied onto the set of bitmap indices rather than the whole training set. For
the root node of the decision tree, the population frequencies are obtained by
simply counting the total number of ”1” in the bitmaps built on the attribute
to be predicted. For each other node in the decision tree, we generate a new
set of bitmaps, each one corresponding to the class in the node. The bitmap
characterizing each class in the current node is obtained by applying the AND
operation between the bitmap associated to the current node and the bitmaps
corresponding to the successive nodes from the root to the current node. To get
the population frequency of each class in this node, we count the total number of
”1” in the resulting bitmap. Since the information gain is based on population
frequencies, it is also computed with bitmap indices.

3.2 Running Example

To illustrate our approach, let us take the Titanic database as an example
(Table 1). The aim is to predict which classes of the Titanic passengers are



Bitmap Index-Based Decision Trees 69

more likely to survive the wreck. Those passengers are described by different
attributes which are: Class={1st ; 2nd ; 3rd ; Crew}; Age={Adult ; Child}; Gen-
der={Female; Male} and Survivor={No; Yes}.

For each predictive attribute (Gender, Class and Age) and the attribute to be
predicted (Survivor), we create its corresponding bitmap index (Table 4). Thus,
our learning population is precisely composed of these four different bitmap
indices. Hence, we apply the decision tree building method directly on this set
of bitmap indices.

Table 4. Bitmap Indices for Titanic’s Database

Rowid .. 12 11 10 9 8 7 6 5 4 3 2 1

Class Crew .. 1 0 0 1 1 0 0 0 0 0 0 0
1st .. 0 0 0 0 0 1 0 1 0 0 0 1
2nd .. 0 0 1 0 0 0 1 0 0 1 0 0
3rd .. 0 1 0 0 0 0 0 0 1 0 1 0

Age Child .. 0 0 0 0 0 0 0 0 0 1 0 0
Adult .. 1 1 1 1 1 1 1 1 1 0 1 1

Gender Female .. 0 0 0 1 1 0 0 1 0 0 0 1
Male .. 1 1 1 0 0 1 1 0 1 1 1 0

Survivor No .. 1 1 1 0 1 0 1 0 0 0 0 0
Yes .. 0 0 0 1 0 1 0 1 1 1 1 1

To obtain the root node of the decision tree, we have to determine the pop-
ulation frequency of each class. In our running example, these frequencies are
obtained by counting the number of ”1” in the bitmaps associated to Survivor=
”Yes” and Survivor= ”No” respectively (Fig. 1).

Fig. 1. Root node

Then, the variation of entropy indicates that the segmentation attribute is
Gender. The population of the root node is then divided into two sub-nodes
corresponding to the rules Gender= ”Male” and Gender= ”Female” respec-
tively. Each sub-node is composed of two sub-populations, those that survived
and those that did not. To obtain the population frequencies of the node Gen-
der= ”Male” , we apply the logical operation AND firstly between the Gender=
”Male” bitmap and the Survivor= ”Yes” bitmap and secondly between the Gen-
der= ”Male” bitmap and the Survivor= ”No” bitmap. Then we count the total
number of ”1” in the corresponding And bitmap (Table 5). The same process is
performed for the node Gender=”Female” (Fig. 2). This process is repeated for
all the other predictive attributes to obtain the final decision tree.



70 C. Favre and F. Bentayeb

Table 5. AND-bitmaps for the node Gender= ”Male”

Rowid .. 12 11 10 9 8 7 6 5 4 3 2 1

Survivor=”Yes” .. 0 0 0 1 0 1 0 1 1 1 1 1
Gender=”Male” .. 1 1 1 0 0 1 1 0 1 1 1 0
AND .. 0 0 0 0 0 1 0 0 1 1 1 0
Survivor=”No” .. 1 1 1 0 1 0 1 0 0 0 0 0
Gender=”Male” .. 1 1 1 0 0 1 1 0 1 1 1 0
AND .. 1 1 1 0 0 0 1 0 0 0 0 0

Fig. 2. Nodes of the first level of the decision tree

4 Validation

4.1 Implementation

We have implemented the ID3 method using bitmap indices as a PL/SQL stored
procedure, namely ID3 Bitmap, under Oracle 9i, which is part of a broader
package named decision tree that is available on-line1. This stored procedure
allows us to create the necessary bitmap indices for a given training set and then
build the decision tree. Since Oracle uses by default B-Tree indices, we forced
it to use bitmap indices. The nodes of the decision tree are built by using an
SQL query that is based on the AND operation applied on its own bitmaps
and its parent bitmaps. Then, the obtained And bitmaps are used to count the
population frequency of each class in the node with simple COUNT queries.
These counts are used to determine the criterion that helps either partitioning
the current node into a set of disjoint sub-partitions based on the values of a
specific attribute or concluding that the node is a leaf, i.e., a terminal node. In
the same way, to compute the information gain for a predictive attribute, our
implementation uses bitmap indices rather than the whole training set.

4.2 Experimental Results

In order to validate our bitmap-based approach and compare its performances to
classical in-memory data mining approaches, we tested it on the Titanic training
set (Table 1). To have a significant database size, we duplicated the records
of Titanic database. Moreover, these tests have been carried out in the same
environment: a PC with 128 MB of RAM and the Personal Oracle DBMS version

1 http://bdd.univ-lyon2.fr/download/decision tree.zip



Bitmap Index-Based Decision Trees 71

Fig. 3. Processing time with respect to database size

9i (Fig. 3). First, we compared the processing times of ID3 Bitmap to those
of a classical in-memory implementation of ID3 available in the Sipina data
mining software [20]. We clearly observe that ID3 Bitmap allowed us mining
large databases without size limit comparing with ID3 Sipina, while obtaining
linear processing times with respect to the database size. For databases over 50
Mo, with the hardware configuration used for the tests, Sipina is unable to build a
decision tree as compared to our method. Secondly, we compared the processing
times of our ID3 Bitmap with the view-based approach ID3 V iew [2]. The
results we obtain clearly underline the gain (40%) induced by ID3 Bitmap,
that has a much lower processing time than ID3 V iew on an average.

4.3 Complexity Study

Our objective is to confirm, from a theoretical point of view, the results obtained
by our approach. For this study we place ourselves in the worst case, i.e. the
indices are too large to be loaded in memory.

Let N be the total number of tuples in the training set, K the number of
attributes, L the average length, in bits, of each attribute and A the average
number of values of each attribute.

First we evaluate the size of training sets. The size of the initial training set
is N ∗ L ∗ K bits. For our bitmap-based approach, this initial training set is
replaced by the set of bitmap indices. Thus K bitmap indices are created with
an average number of A bitmaps for each index. Each bitmap has a size of N
bits. In this case, the size of the training set is N ∗ A ∗ K bits. As regards to the
size of the training set and thus the loading time, our approach is preferable if
A < L, which corresponds to a majority of cases.

In terms of time spent to data reading, we consider that a bit is read in one
time unit.

The total number of nodes on the ith depth level can be approximated by
Ai−1. Indeed we suppose that the obtained decision tree is complete and bal-
anced. To reach level i + 1 from an unspecified level i of the tree, each training
set must be read as many times as there are predictive attributes remaining at
this level, i.e. (K − i).

In the classical approach, as the size of the training set is N ∗ L ∗ K, reading
time for level i (in time units) is (K − i) ∗ N ∗ L ∗ K ∗ Ai−1. Hence, to build the



72 C. Favre and F. Bentayeb

whole decision tree, in the classical approach, the reading time is :
∑K

i=1(K −
i) ∗ N ∗ L ∗ K ∗ Ai−1.

In our bitmap index-based approach, the index size is approximated by
N ∗ A bits. To reach level i + 1 from an unspecified level i of the tree, for
a given predictive attribute, the number of index to read is i + 1. Thus, at
level i, the reading time is : (i + 1)(K − i)N ∗ Ai. Hence, to build the whole
decision tree with our bitmap index-based approach, the reading time is :∑K

i=1(i + 1)(K − i)N ∗ Ai.
To evaluate the gain in time, we build the following ratio:

R = time with classical approach
time with bitmap index−based approach =

KL
A

∑K

i=1
(K−i)∗Ai

∑K

i=1
(K−i)(i+1)∗Ai

.

After computing we obtain : R =
KL
A

∑K

i=1
(K−i)∗Ai

∑K

i=1
(K−i)∗Ai+

∑K

i=1
i(K−i)∗Ai

R−1 = A
KL (1 +

∑K

i=1
i(K−i)∗Ai

∑K

i=1
(K−i)∗Ai

) = A
KL (1 + G)

As we consider the polynomials of higher degree, G is of complexity K. Thus
R−1 is of complexity A

L . Indeed R−1 = A
KL (1 + K) = A

L (1 + 1
K ) and 1

K is
insignificant. Our approach is interesting if the ratio R−1 is lower than one, that
means if A < L, which corresponds to a majority of the cases.

5 Conclusion and Perspectives

These last years, an important research effort has been made to apply efficiently
data mining methods on large databases. Traditional data mining algorithms op-
erate on main memory, which limits the size of the processed databases. Recently,
a new approach has emerged. It consists in integrating data mining methods
within DBMSs using only the tools offered by these latter. Following the inte-
grated approach, we proposed in this paper an original method for applying deci-
sion trees-based algorithms on large databases. This method uses bitmap indices
which have many useful properties such as the count and the bit-wise operations
that can be used through SQL queries. Our method has two major advantages:
it is not limited by the size of the main memory and it improves processing times
because there is no need to access data sources since our method uses bitmap
indices rather than the whole training set. To validate our approach, we im-
plemented the ID3 method, under the form of a PL/SQL stored procedure into
the Oracle . We showed that our bitmap-based implementation allowed us
mining bigger databases as compared to the in-memory implementations while
obtaining linear processing times with respect to the database size.

There are different perspectives opened by this study. We plan to implement
other data mining methods using bitmap indices. More precisely, extending our
approach to deal with the OR operator in the case for example of the CART
method allowing grouping attribute values into classes. Moreover, we intend

DBMS



Bitmap Index-Based Decision Trees 73

to compare the performances of these implementations to their equivalent in-
memory software on real-life databases.

References

1. R. Agrawal, H. Mannila, R. Srikant, and et al. Fast discovery of association rules.
In Advances in Kowledge Discovery and Data Mining, pages 307–328, 1996.

2. F. Bentayeb and J. Darmont. Decision tree modeling with relational views. In
XIIIth International Symposium on Methodologies for Intelligent Systems (ISMIS
02), France, 2002.

3. F. Bentayeb, J. Darmont, and C. Udréa. Efficient integration of data mining
techniques in dbmss. In 8th International Database Engineering and Applications
Symposium (IDEAS 04), Portugal, 2004.

4. J. H. Chauchat and R. Rakotomalala. A new sampling strategy for building deci-
sion trees from large databases. In 7th Conference of the International Federation
of Classification Societies (IFCS 00), Belgium, 2000.

5. S. Chaudhuri. Data mining and database systems: Where is the intersection? Data
Engineering Bulletin, 21(1):4–8, 1998.

6. B. Dunkel and N. Soparkar. Data organization and access for efficient data mining.
In ICDE, pages 522–529, 1999.

7. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast
decision tree construction of large datasets. In 24th International Conference on
Very Large Data Bases (VLDB 98), USA, 1998.

8. I. Geist and K. U. Sattler. Towards data mining operators in database systems: Al-
gebra and implementation. 2nd International Workshop on Databases, Documents,
and Information Fusion (DBFusion 2002).

9. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In SIGMOD’96 Workshop on Research
Issues in Data Mining and Knowledge Discovery (DMKD’96), Canada, 1996.

10. T. Imielinski and A. Virmani. Msql: A query language for database mining.
DataMining and Knowledge Discovery : An International Journal, 3:373–408, 1999.

11. H. Liu and H. Motoda. Feature Selection for knowledge discovery and data mining.
Kluwer Academic Publishers, 1998.

12. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In The VLDB Journal, pages 122–133, 1996.

13. Oracle. Oracle 9i data mining. White paper, June 2001.
14. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
15. G. Ramesh, W. Maniatty, and M. Zaki. Indexing and data access methods for

database mining, 2001.
16. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational

database systems: Alternatives and implications. In ACM SIGMOD International
Conference on Management of Data (SIGMOD 98), USA, 1998.

17. S. Soni, Z. Tang, and J. Yang. Performance study microsoft data mining algo-
rithms. Technical report, Microsoft Corp., 2001.

18. H. Toivonen. Sampling large databases for association rules. In In Proc. 1996 Int.
Conf. Very Large Data Bases, 1996.

19. H. Wang, C. Zaniolo, and C. R. Luo. Atlas : a small but complete sql extension
for data mining and data streams. In 29th VLDB Conference. Germany, 2003.

20. D. A. Zighed and R. Rakotomalala. Sipina-w(c) for windows: User’s guide. Tech-
nical report, ERIC laboratory, University of Lyon 2, France, 1996.


	Introduction
	Bitmap Indices
	Example
	Properties

	Bitmap-Based Decision Trees Methods
	Principle
	Running Example

	Validation
	Implementation
	Experimental Results
	Complexity Study

	Conclusion and Perspectives



