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Abstract. A contingency table summarizes the conditional frequencies
of two attributes and shows how these two attributes are dependent on
each other with the information on a partition of universe generated by
these attributes. Thus, this table can be viewed as a relation between two
attributes with respect to information granularity. This paper focuses on
statistical independence in a contingency table from the viewpoint of
granular computing, which shows that statistical independence in a con-
tingency table is a special form of linear dependence. The discussions
also show that when a contingency table is viewed as a matrix, its rank
is equal to 1.0. Thus, the degree of independence, rank plays a very im-
portant role in extracting a probabilistic model from a given contingency
table.

1 Introduction

Statistical independence between two attributes is a very important concept in
data mining and statistics. The definition P (A, B) = P (A)P (B) show that the
joint probability of A and B is the product of both probabilities. This gives sev-
eral useful formula, such as P (A|B) = P (A), P (B|A) = P (B). In a data mining
context, these formulae show that these two attributes may not be correlated
with each other. Thus, when A or B is a classification target, the other attribute
may not play an important role in its classification.

Although independence is a very important concept, it has not been fully
and formally investigated as a relation between two attributes.

In this paper, a statistical independence in a contingency table is focused on
from the viewpoint of granular computing.

The first important observation is that a contingency table compares two
attributes with respect to information granularity. It is shown from the definition
that statistifcal independence in a contingency table is a special form of linear
depedence of two attributes. Especially, when the table is viewed as a matrix,
the above discussion shows that the rank of the matrix is equal to 1.0. Also, the
results also show that partial statistical independence can be observed.

The second important observation is that matrix algebra is a key point of
analysis of this table. A contingency table can be viewed as a matrix and several
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operations and ideas of matrix theory are introduced into the analysis of the
contingency table.

The paper is organized as follows: Section 2 discusses the characteristics of
contingency tables. Section 3 shows the conditions on statistical independence
for a 2 × 2 table. Section 4 gives those for a 2 × n table. Section 5 extends
these results into a multi-way contingency table. Section 6 discusses statistical
independence from matrix theory. Finally, Section 7 concludes this paper.

2 Contingency Table from Rough Sets

2.1 Rough Sets Notations

In the subsequent sections, the following notations is adopted, which is intro-
duced in [7]. Let U denote a nonempty, finite set called the universe and A
denote a nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where
Va is called the domain of a, respectively. Then, a decision table is defined as
an information system, A = (U, A ∪ {D}), where {D} is a set of given decision
attributes. The atomic formulas over B ⊆ A ∪ {D} and V are expressions of
the form [a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set
F (B, V ) of formulas over B is the least set containing all atomic formulas over
B and closed with respect to disjunction, conjunction and negation. For each
f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all objects in U
with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By using this framework, classification accuracy and coverage, or true positive
rate is defined as follows.

Definition 1.
Let R and D denote a formula in F (B, V ) and a set of objects whose decision
attribute is given as �, respectively. Classification accuracy and coverage(true
positive rate) for R → D is defined as:

αR(D) =
|RA ∩ D|

|RA| (= P (D|R)), and κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |A| denotes the cardinality of a set A, αR(D) denotes a classification
accuracy of R as to classification of D, and κR(D) denotes a coverage, or a true
positive rate of R to D, respectively.

2.2 Two-Way Contingency Table

From the viewpoint of information systems, a contingency table summarizes the
relation between two attributes with respect to frequencies. This viewpoint has
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already been discussed in [10, 11]. However, this study focuses on more statistical
interpretation of this table.

Definition 2. Let R1 and R2 denote binary attributes in an attribute space A.
A contingency table is a table of a set of the meaning of the following formulas:
|[R1 = 0]A|,|[R1 = 1]A|, |[R2 = 0]A|,|[R1 = 1]A|, |[R1 = 0 ∧ R2 = 0]A|,|[R1 =
0∧R2 = 1]A|, |[R1 = 1∧R2 = 0]A|,|[R1 = 1∧R2 = 1]A|, |[R1 = 0∨R1 = 1]A|(=
|U |). This table is arranged into the form shown in Table 1, where: |[R1 = 0]A| =
x11 + x21 = x·1, |[R1 = 1]A| = x12 + x22 = x·2, |[R2 = 0]A| = x11 + x12 = x1·,
|[R2 = 1]A| = x21 + x22 = x2·, |[R1 = 0 ∧ R2 = 0]A| = x11, |[R1 = 0 ∧
R2 = 1]A| = x21, |[R1 = 1 ∧ R2 = 0]A| = x12, |[R1 = 1 ∧ R2 = 1]A| = x22,
|[R1 = 0 ∨ R1 = 1]A| = x·1 + x·2 = x··(= |U |).

Table 1. Two way Contingency Table

R1 = 0 R1 = 1
R2 = 0 x11 x12 x1·
R2 = 1 x21 x22 x2·

x·1 x·2 x··
(= |U | = N)

From this table, accuracy and coverage for [R1 = 0] → [R2 = 0] are defined as:

α[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R1 = 0]A| =

x11

x·1
,

and

κ[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R2 = 0]A| =

x11

x1·
.

2.3 Multi-way Contingency Table

Two-way contingency table can be extended into a contingency table for multi-
nominal attributes.

Definition 3. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a set
of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|, |[R1 =
Aj ∧R2 = Bi]A|, |[R1 = A1∧R1 = A2∧· · ·∧R1 = Am]A|, |[R2 = B1∧R2 = A2∧
· · · ∧ R2 = An]A| and |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m). This table is
arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =

∑m
i=1 x1i = x·j,

|[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij, |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m).
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Table 2. Contingency Table (m × n)

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

3 Statistical Independence in 2 × 2 Contingency Table

Let us consider a contingency table shown in Table 1. Statistical independence
between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=

x11 + x12

N
× x11 + x21

N
x12

N
=

x11 + x12

N
× x12 + x22

N
x21

N
=

x21 + x22

N
× x11 + x21

N
x22

N
=

x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will be obtained from these four
formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,

Theorem 1. If two attributes in a contingency table shown in Table 1 are sta-
tistical indepedent, the following equation holds:

x11x22 − x12x21 = 0 (1)
	


It is notable that the above equation corresponds to the fact that the deter-
minant of a matrix corresponding to this table is equal to 0. Also, when these
four values are not equal to 0, the equation 1 can be transformed into:

x11

x21
=

x12

x22
.
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Let us assume that the above ratio is equal to C(constant). Then, since x11 =
Cx21 and x12 = Cx22, the following equation is obtained.

x11 + x12

x21 + x22
=

C(x21 + x22)
x21 + x22

= C =
x11

x21
=

x12

x22
. (2)

It is notable that this discussion can be easily extended into a 2xn contingency
table where n > 3. The important equationwill be extended into

x11

x21
=

x12

x22
= · · · =

x1n

x2n
=

x11 + x12 + · · · + x1n

x21 + x22 + · · · + x2n
=

∑n
k=1 x1k∑n
k=1 x2k

(3)

Thus,

Theorem 2. If two attributes in a contingency table (2 × k(k = 2, · · · , n)) are
statistical indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22 = · · · = x1nx21 − x11xn3 = 0 (4)
	


It is also notable that this equation is the same as the equation on collinearity
of projective geometry [2].

4 Statistical Independence in m × n Contingency Table

Let us consider a m×n contingency table shown in Table 2. Statistical indepen-
dence of R1 and R2 gives the following formulae:

P ([R1 = Ai, R2 = Bj ]) = P ([R1 = Ai])P ([R2 = Bj ])
(i = 1, · · · , m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (5)

Thus, we have obtained:

xij =
∑n

k=1 xik × ∑m
l=1 xlj

N
. (6)

Thus, for a fixed j,
xiaj

xibj
=

∑n
k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb
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Since this relation will hold for any j, the following equation is obtained:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
=

∑n
k=1 xiak∑n
k=1 xibk

. (7)

Since the right hand side of the above equation will be constant, thus all the
ratios are constant. Thus,

Theorem 3. If two attributes in a contingency table shown in Table 2 are sta-
tistical indepedent, the following equations hold:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
= const. (8)

for all rows: ia and ib (ia, ib = 1, 2, · · · , m).
	


5 Contingency Matrix

The meaning of the above discussions will become much clearer when we view
a contingency table as a matrix.

Definition 4. A corresponding matrix CTa,b
is defined as a matrix the element

of which are equal to the value of the corresponding contingency table Ta,b of two
attributes a and b, except for marginal values.

Definition 5. The rank of a table is defined as the rank of its corresponding
matrix. The maximum value of the rank is equal to the size of (square) matrix,
denoted by r.

The contingency matrix of Table 2(T (R1, R2)) is defined as CTR1,R2
as below:

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠

5.1 Independence of 2 × 2 Contingency Table

The results in Section 3 corresponds to the degree of independence in matrix
theory. Let us assume that a contingency table is given as Table 1. Then the
corresponding matrix (CTR1,R2

) is given as:
(

x11 x12
x21 x22

)
,

Then,

Proposition 1. The determinant of det(CTR1,R2
) is equal to x11x22 − x12x21,
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Proposition 2. The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

From Theorem 1,

Theorem 4. If the rank of the corresponding matrix of a 2times2 contingency
table is 1, then two attributes in a given contingency table are statistically inde-
pendent. Thus,

rank =

{
2, dependent

1, statistical independent

This discussion can be extended into 2 × n tables.

Theorem 5. If the rank of the corresponding matrix of a 2×n contigency table
is 1, then two attributes in a given contingency table are statistically independent.
Thus,

rank =

{
2, dependent

1, statistical independent

5.2 Independence of 3 × 3 Contingency Table

When the number of rows and columns are larger than 3, then the situation is
a little changed. It is easy to see that the rank for statistical independence of
a m × n contingency table is equal 1.0 as shown in Theorem 3. Also, when the
rank is equal to min(m, n), two attributes are dependent.

Then, what kind of structure will a contingency matrix have when the rank is
larger than 1,0 and smaller than min(m, n)− 1 ? For illustration, let us consider
the following 3times3 contingecy table.

Example. Let us consider the following corresponding matrix:

A =

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ .

The determinant of A is:

det(A) = 1 × (−1)1+1det

(
5 6
8 9

)

+2 × (−1)1+2det

(
4 6
7 9

)

+3 × (−1)1+3det

(
4 5
7 8

)
= 1 × (−3) + 2 × 6 + 3 × (−3) = 0
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Thus, the rank of A is smaller than 2. On the other hand, since (123) �= k(456)
and (123) �= k(789), the rank of A is not equal to 1.0 Thus, the rank of A is
equal to 2.0. Actually, one of three rows can be represented by the other two
rows. For example,

(4 5 6) =
1
2
{(1 2 3) + (7 8 9)}.

Therefore, in this case, we can say that two of three pairs of one attribute are
dependent to the other attribute, but one pair is statistically independent of the
other attribute with respect to the linear combination of two pairs. It is easy to
see that this case includes the cases when two pairs are statistically independent
of the other attribute, but the table becomes statistically dependent with the
other attribute.

In other words, the corresponding matrix is a mixure of statistical depen-
dence and independence. We call this case contextual independent. From this
illustration, the following theorem is obtained:

Theorem 6. If the rank of the corresponding matrix of a 3× 3 contigency table
is 1, then two attributes in a given contingency table are statistically independent.
Thus,

rank =

⎧⎪⎨
⎪⎩

3, dependent

2, contextual independent

1, statistical independent

It is easy to see that this discussion can be extended into 3 × n contingency
tables.

5.3 Independence of m × n Contingency Table

Finally, the relation between rank and independence in a multi-way contingency
table is obtained from Theorem 3.

Theorem 7. Let the corresponding matrix of a given contingency table be a
m×n matrix. If the rank of the corresponding matrix is 1, then two attributes in
a given contingency table are statistically independent. If the rank of the corre-
sponding matrix is min(m, n) , then two attributes in a given contingency table
are dependent. Otherwise, two attributes are contextual dependent, which means
that several conditional probabilities can be represented by a linear combination
of conditional probabilities. Thus,

rank =

⎧⎪⎨
⎪⎩

min(m, n) dependent

2, · · · , min(m, n) − 1 contextual independent

1 statistical independent
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6 Conclusion

In this paper, a contingency table is interpreted from the viewpoint of gran-
ular computing and statistical independence. From the definition of statistical
independence, statistical independence in a contingency table will holds when
the equations of collinearity(Equation 6) are satisfied. In other words, statisti-
cal independence can be viewed as linear dependence. Then, the correspondence
between contingency table and matrix, gives the theorem where the rank of the
contingency matrix of a given contingency table is equal to 1 if two attributes
are statistical independent. That is, all the rows of contingency table can be
described by one row with the coefficient given by a marginal distribution. If the
rank is maximum, then two attributes are dependent. Otherwise, some proba-
bilistic structure can be found within attribute -value pairs in a given attribute,
which we call contextual independence. Thus, matrix algebra is a key point of
the analysis of a contingency table and the degree of independence, rank plays
a very important role in extracting a probabilistic model.
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