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Abstract. This paper presents a method for automatically constructing
a sophisticated user/process profile from traces of user/process behav-
ior. User profile is encoded by means of a Hierarchical Hidden Markov
Model (HHMM). The HHMM is a well formalized tool suitable to model
complex patterns in long temporal or spatial sequences. The method de-
scribed here is based on a recent algorithm, which is able to synthesize
the HHMM structure from a set of logs of the user activity. The algorithm
follows a bottom-up strategy, in which elementary facts in the sequences
(motives) are progressively grouped, thus building the abstraction hi-
erarchy of a HHMM, layer after layer. The method is firstly evaluated
on artificial data. Then a user identification task, from real traces, is
considered. A preliminary experimentation with several different users
produced encouraging results.

1 Introduction

Building profiles for processes and for interactive users, is an important task in
intrusion detection. This paper presents the results obtained with a recent in-
duction algorithm algorithm [2], which is based on Hierarchical Hidden Markov
Model [5]. The algorithm discovers typical ”motives” 1 of a process behavior, and
correlates them into a hierarchical model. Motives can be interleaved with pos-
sibly long gaps where no regular behavior is detectable. We assume that motives
could be affected by noise due to non-deterministic causes. Noise is modeled
as insertion, deletion and substitution errors according to a common practice
followed in Pattern Recognition. An approach to deal with such kind of noisy
patterns, which reported impressive records of successes in speech recognition
[10] and DNA analysis [4], is the one based on Hidden Markov Model (HMM)
[11]). However, applying HMM does not reduce to simply running a learning
algorithm but it requires a considerable effort in order to individuate a suitable
structure for the HMM. A formal framework to design and train complex HMMs

1 A motif is a subsequence of consecutive elementary events typical of a process.

M.-S. Hacid et al. (Eds.): ISMIS 2005, LNAI 3488, pp. 47–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



48 U. Galassi et al.

is represented by the Hierarchical Hidden Markov Model (HHMM) [5]. The prob-
lem of estimating HMM and HHMM parameters has been widely investigated
while little has been done in order to learn their structure. A few proposals can
be found in the literature in order to learn the structure of HMM. A novelty,
in this sense, is represented by a recent paper by Botta et Al. [2], which pro-
poses a method for automatically inferring from sequences, and possibly domain
knowledge, both the structure and the parameters of complex HHMMs.

In this paper, the learning algorithm proposed in [2] is briefly overviewed
and then is experimentally evaluated on three profiling case studies. The first
two cases are built on a suite of artificial traces automatically generated by a set
of given HHMMs. The challenge for the algorithm is to reconstruct the original
model from the traces. It will be shown that the algorithm is able to learn
HHMMs very similar to the original ones, in presence of noise and distractors.

The third case study refers to the problem of constructing a discriminative
model for a user typing on a keyboard [1, 3, 8]. The results reported with a set
of 20 different users are encouraging.

2 The Hierarchical Hidden Markov Model

A Hierarchical Hidden Markov Model is a generalization of the Hidden Markov
Model, which is a stochastic finite state automaton [11] defined by a tuple
〈S, O, A, B, π〉, where:

– S is a set of states, and O is a set of atomic events (observations),
– A is a probability distribution governing the transitions from one state to

another. Specifically, any member ai,j of A defines the probability of the
transition from state si to state sj , given si.

– B is a probability distribution governing the emission of observable events
depending on the state. Specifically, an item bi,j belonging to B defines the
probability of producing event Oj when the automaton is in state si.

– π is a distribution on S defining, for every si ∈ S, the probability that si is
the initial state of the automaton.

A difficulty, related to a HMM defined in this way, is that, when the set of
states S grows large, the number of parameters to estimate (A and B) rapidly
becomes intractable.

A second difficulty is that the probability of a sequence being generated by a
given HMM decreases exponentially with its length. Then, complex and sparse
events become difficult to discover.

The HHMM proposed by Fine, Singer and Tishby [5] is an answer to both
problems. On one hand, the number of parameters to estimate is strongly reduced
by assigning a null probability to many transitions in distribution A, and to many
observations in distribution B. On the other hand, it allows a possibly long chain
of elementary events to be abstracted into a single event, which can be handled
as a single item. This is obtained by exploiting the regular languages property
of being closed under substitution, which allows a large finite state automaton
to be transformed into a hierarchy of simpler ones.
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More specifically, numbering the hierarchy levels with ordinals increasing
from the highest towards the lowest level, observations generated in a state si

k

by a stochastic automaton al level k are sequences generated by an automaton
at level k + 1. Moreover, no direct transition may occur between the states of
different automata in the hierarchy. An example of HHMM is given in Figure 1.
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Fig. 1. Example of Hierarchical Hidden Markov Model. Circles denotes states with
observable emission, whereas rectangles denote gaps

The advantage of the hierarchical structure, as defined by [5], may help very
much the inference of the entire structure of the automaton by part of an induc-
tion algorithm.

The research efforts about HHMM mostly concentrate on the algorithms for
estimating the probabilities governing the emissions and the transition from state
to state. In the seminal paper by Fine et al. [5], the classical Baum-Welch algo-
rithm is extended to the HHMM. In a more recent work, Murphy and Paskin [9]
derive a linear (approximated) algorithm by mapping a HHMM into a Dynamic
Bayesian Network.

3 Learning Algorithm Overview

The basic algorithm [2] is bottom-up and constructs the HHMM hierarchy start-
ing from the lowest level. The first step consists in searching for possible motives,
i.e., short chains of consecutive symbols that appear frequently in the learning
traces, and building a HMM for each one of them. This step is accomplished
by means of classical methods used in DNA analysis [4, 7]. As, motif models
are constructed independently one from another, it may happen that models for
spurious motives be constructed. At the same time, it may happen that relevant
motives be disregarded just because their frequency is not high enough. Both
kinds of errors will be fixed at a second time. The HMMs learned so far, are
then used as feature constructors. Each HMM is labeled with a different name
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and the original sequences are rewritten into the new alphabet defined by the
set of names given to the models. In other words, every sub-sequence in the
input sequences, which can be attributed to a specific HMM, is replaced by the
corresponding name.

The subsequences between two motives, not attributed to any model, are
considered gaps and will be handled by means of special construct called gap.
We will call sequence abstraction this rewriting process. After this basic cycle has
been completed, an analogous learning procedure is repeated on the abstracted
sequences. Models are now built for sequences of episodes, searching for long
range regularities among co-occurrent motives. In this process, spurious motives
not showing significant regularities can be discarded. The major difference, with
respect to the first learning step, is that the models built from the abstract
sequences, are now observable markov models. This makes the task easier and
decreases the computational complexity. In this step, models (gaps) are built
also for the long intervals falling between consecutive motives.

In principle, the abstraction step could be repeated again on the sequences
obtained from the first abstraction step, building a third level of the hierarchy,
and so on. However, up to now, we considered only problems where two hier-
archical levels are sufficient. After building the HHMM structure in this way, it
can be refined using standard training algorithms like the ones proposed in [5, 9].
However, two other refinement techniques are possible.

The first technique concerns the recovery of motives lost in the primary learn-
ing phase because not having a sufficient statistical evidence. As said above, this
missed information has actually been modeled by gaps. A nice property of the
HHMM is that sub-models in the hierarchy have a loose interaction with one
another, and so their structure can be reshaped without changing the global
structure. Then, the model of a gap can be transformed into the model of a
motif later on, when further data will be available.

The second method consists in repeating the entire learning cycle using as
learning set only the portion of the sequences where the instance of the previ-
ously learned HHMM have been found with sufficient evidence. Repeating the
procedure allows more precise models to be learned for motives, because false
motives will no longer participate to the learning procedure. The details about
the implementation can be found in [2].

4 Evaluation on Artificial Traces

A specific testing procedure has been designed in order to monitor the capability
of the algorithm of discovering ”known patterns” hidden in trace artificially
generated by a handcrafted HHMMs. Random noise and spurious motives have
been added to all sequences filling the gaps between consecutive motives, in order
to make the task more difficult.

Three target HHMMs, each one constructed according to a two level hierarchy
have been used to generate a set of 72 learning tasks (24 for every model). Every
learning task consists of a set of 330 traces. The 90% of the sequences contain an
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instance of a target HHMM that should be discovered by the learning program,
whereas the 10% contain sequences of spurious motives non generated by the
target HHMM. The sequence length ranges from 80 to 120 elementary events.

The structure for the high level of the three models is shown in Figure 2.
Every state at the high level emits a string (motif) generated by an HMM at the
low level, indicated with a capital letter (A,B,C,D,E). A different HMM (F) has
been used to generate spurious motives. The gaps between motives have been
filled with subsequences containing random noise.
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Fig. 2. HHMM used for evaluation on artificial data

The evaluation of the obtained results has been done on the base of the
bayes classification error between two (or more HHMMs). Formally, given two
HHMMs, λ1 and λ2, and the set L of all possible traces, which can be generated
by λ1 or λ2, the Bayes classification error C(λ1, λ2) is defined as:

C(λ1, λ2) =
∑

x∈L

[min(p(λ1|x), p(λ2|x)]p(x) (1)

being p(λ1|x) and p(λ2|x) the probability that, given a trace x, it has been
generated by λ1 or λ2, respectively, and p(x) the a priori probability of x. We
notice that the upper-bound for C(λ1, λ2)is 0.5, when λ1 and λ2 are identical.
In general, for N models, the upper-bound is given by the expression 1 − 1/N .

In general, expression (1) cannot be computed because L is too large. There-
fore, we adopted an approximate evaluation made using a subset of L stochas-
tically sampled.

The bayes classification error 1 intervenes in the evaluation procedure in two
different ways. A first way is to measure the quality of the learned models. A
perfect learner should learn a model identical to the one used to generate the
traces. Therefore, a learned model has to be considered as much accurate as
much close to 0.5 the classification error, between it and the original model, is.

The second way is to estimate the difficulty of the learning task. It is rea-
sonable to assume that the difficulty of identifying a model hidden in a set of
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traces grows along with the similarity among the motives belonging to the model
and the spurious motives. Moreover, the difficulty grows also when the motives
belonging to a same model become similar each other, because it becomes more
difficult to discover the correspondence between a motif and the hidden state
it has been emitted from. Therefore, the experimentation has been run using
different versions of models A, B, C, D, E, F with different bayes classification
error among them.

The results obtained under three different conditions of difficulty are sum-
marized in Table 1. The similarity between the six kinds of motives has been
varied from 0.2 to 0.55. For every setting, the experiment has been repeated 8
times for each one of the three models. The reported results are the average over
the 8 runs. In all cases, the bayes classification error has been estimated using
a set of traces obtained by collecting 500 sequences generated from each one of
the models involved in the specific comparison.

Table 1. Bayes classification error between the target model and the learned model,
versus the confusion among the basic motives (reported in the first line)

Motives 0.2 0.4 0.55
Model (a) 0.48 0.46 0.45
Model (b) 0.47 0.42 0.42
Model (c) 0.43 0.42 0.41

It appears that the performances suffer very little from the similarity among
the motif models, and in all cases, the similarity between the original model and
the learned model is very high (C(λ1, λ2), is close to 0.5).

5 Evaluation of the Generalization Capabilities

The second case study has the goal of evaluating the ability of the algorithm
at correctly generalizing the nominal form of motives in presence of noise. The
generalization of the learned HHMM is assessed by considering the maximum
likelihood sequence, it generates. In the best case this should be identical to
the one generated by the original model, used to construct the dataset. For this
group of experiments, HHMMs, which generate sequences of names of towns
in a predefined order, have been used. Such HHMMs also model the presence
of noise in the data, in form of insertion, deletion and substitution errors. The
gaps between the names are filled by symbols randomly chosen in the alphabet
defined by the union of the letters contained in the names. Moreover, random
subsequences, up to 15 characters long, have been added at the beginning and
the end of each sequence. The global length of the sequences ranges from 60
to 120 characters. The difficulty of the task has been controlled by varying the
degree of noise.
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One set of experiments has been designed in this framework. More specifically,
a sequence of problems has been generated varying the number of words (5 ≤
w ≤ 8), the word length (5 ≤ L ≤ 8) and the noise level (N ∈ {0%, 5%, 10%, 15%}.
For every triple < w, L, N >, 10 different datasets has been generated for a total
of 640 learning problems.

Table 2. Performances obtained with town names dataset. The sequence length ranges
from 60 to 140 characters. The CPU time, for solving a problem, ranges from 42 to 83
seconds on a Pentium IV 2.4Ghz

After the first cycle After refinement
Noise Level Noise Level

w L 0% 5% 10 % 15% 0% 5% 10 % 15%
5 5 0.03 0.06 0.06 0.08 0.04 0.04 0.04 0.04
5 6 0.06 0.12 0.12 0.09 0.03 0.03 0.03 0.03
5 7 0.00 0.02 0.03 0.05 0.00 0.00 0.02 0.00
5 8 0.02 0.04 0.02 0.04 0.00 0.00 0.00 0.00
6 5 0.06 0.11 0.04 0.04 0.10 0.06 0.00 0.03
6 6 0.06 0.10 0.06 0.19 0.05 0.00 0.00 0.00
6 7 0.03 0.03 0.02 0.05 0.02 0.00 0.00 0.00
6 8 0.01 0.04 0.05 0.05 0.00 0.00 0.04 0.00
7 5 0.02 0.05 0.11 0.17 0.02 0.05 0.01 0.10
7 6 0.01 0.10 0.05 0.14 0.04 0.02 0.05 0.04
7 7 0.00 0.06 0.02 0.05 0.00 0.00 0.02 0.05
7 8 0.01 0.06 0.09 0.11 0.01 0.00 0.09 0.09
8 5 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00
8 6 0.03 0.08 0.10 0.14 0.03 0.06 0.06 0.14
8 7 0.00 0.01 0.01 0.08 0.00 0.00 0.00 0.00
8 8 0.01 0.03 0.08 0.09 0.01 0.00 0.00 0.0

The most important results are summarized in Table 2. The error rate is eval-
uated as the edit distance (i.e. the minimum number of corrections) between the
maximum likelihood sequence (maximum consensus) generated by the Viterbi
algorithm [6] from the original HHMM and the one generated from the learned
HHMM. When, an entire word is missed, the corresponding error is set equal to
the its length. Experiments in table 2, reporting an error rate much higher than
the others, have missed words. In all cases, the learning cycle has been iterated
twice, as explained in Section 3. It appears that the average error rate after one
refinement cycle decreases of about 50% with respect to the first learning step.

From Table 2, it appears that the model extracted from the data without noise
is almost error free. Moreover, the method seems to be little sensitive with respect
to the sequence length while the error rate roughly increases proportionally to
the noise in the original model (the 15% of noise corresponds to an average error
rate of about 19%).
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6 User Identification

The task consists in learning to identify a user from the its typing style on a
keyboard. The basic assumption is that every user has a different way of typing
that becomes particularly evident when he types words which are specifically
important for him, such its name or words referring to his job. Assimilating such
words to motives characteristic of a user, it is possible to learn a discriminating
HHMM on the basis of them.

Two experiments have been done. In the first, a group of 20 users have been
asked to type a sentence of 22 syllables on the same keyboard. A transparent
program recorded, for every typed key, the duration and the delay two consec-
utive strikes creating a trace for every typing session. Each user provided ten
repetitions of the sentence. Then, a dataset of 200 traces has been obtained,
which has been partitioned into a learning set of 140 traces and a testing set of
60 traces. According to a standard procedure in machine learning, 20 HHMMs
have been learned from the learning set. Then, the 20 HHMMs have been used
to classify the traces in the testing set, according to the following standard pro-
cedure. For each HHMM M and for each trace t the forward-backward algorithm
[11] is applied in order to estimate the probability for t of being generated by
M . Then, t is attributed to the HHMM that has shows the highest probability.
If such a HHMM is the model of the the user that has generated t, the classifi-
cation is considered correct. Otherwise it is counted as a misclassification error.
However, it may happen that all HHMMs show a null probability when t does
not belong the language of anyone of them. This is considered a rejection error.
In, the specific case, 76% of the traces have been correctly classified with a very
good margin (a strong difference between the probability assigned by the cor-
rect model and the other ones). An analysis of the misclassified data has shown
that they are by to the presence of serious typing errors (it is quite rare that a
sequence in the dataset does not show any typing correction). As the number of
repetitions for a single user is small, the algorithm was not able to learn also the
error modalities for each one of them.

In the second experiment, a volunteer (not belonging to the group of 20 users
in the first experiment) provided 140 repetitions of the same sentence used in
the first experiment. A set of 100 of them has been used to build a model of
the user. The HHMM learned by the algorithm contained 11 motif models at
the low level corresponding to 11 states at the high level. It has been evaluated
using the remaining 40 traces of the volunteer and the 200 traces used in the
first experiment. The results have been excellent: on the 40 traces belonging to
the volunteer, the log-odds of the probability of the trace assigned by the model
was always very high (from +140 to +190), whereas on the 200 traces of the
other users it was always very low (from -10 to +10).

The experiment shows that, increasing the size of the dataset, the algorithm
has been able to learn a very accurate model.
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7 Conclusions

We have proposed a method for automatically synthesizing complex profiles
based on HHMMs from traces. In preliminary tests on artificial datasets, the
method succeeded in reconstructing non trivial two level HHMMs, whereas the
results obtained on a task of user identification are very encouraging. It is worth
noticing that, in this case, the goal was not to compete with the results obtained
by task specific algorithms[1, 3, 8], but to test how a general purpose algorithm
performed on a non trivial task for which it was not customized. In fact, the
learning algorithm has been simply run on the datasets dedicating few hours to
prepare the experiment. Even if the experimentation is not extensive enough for
a definitive conclusion, the results look interesting. In particular, we consider
very promising the fact that the distance between the models of the different
users is very large.
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