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Abstract. Subsystem based generalizations of rough set approxima-
tions are investigated. Instead of using an equivalence relation, an arbi-
trary binary relation is used to construct a subsystem. By exploring the
relationships between subsystems and different types of binary relations,
we examine various classes of generalized approximation operators. The
structures of subsystems and the properties of approximation operators
are analyzed.

1 Introduction

Successful applications of the rough set theory depend on the understanding of
its basic notions, various views, interpretations and formulations of the theory,
and potentially useful generalizations of the basic theory [13, 14, 16, 19, 21]. This
paper makes a further contribution by investigating another type of less studied,
subsystem based generalizations of rough set approximations.

A basic notion of rough set theory is the lower and upper approximations, or
approximation operators [5, 7, 13]. There exist several definitions of this concept,
commonly known as the element based, granule based, and subsystem based
definitions [19]. Each of them offers a unique interpretation of the theory. They
can be used to investigate the connections to other theories, and to generalize
the basic theory in different directions [16, 19].

The element based definition establishes a connection between approximation
operators and the necessity and the possibility operators of modal logic. Based
on the results from modal logics, one can generalize approximation operators by
using any binary relations [20]. Under the granule based definition, one may view
rough set theory as a concrete example of granular computing [18]. Approxima-
tion operators can be generalized by using coverings of the universe [8, 22], or
neighborhood systems [15]. The subsystem based definition relates approxima-
tion operators to the interior and closure operators of topological spaces [11, 12],
the closure operators of closure systems [17], and operators in other algebraic
systems [1, 3, 17].

The subsystem based formulation of the rough set theory was first developed
by Pawlak [5]. An equivalence relation is used to define a special type of topo-
logical space, in which the family of all open sets is the same as the family of all
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closed sets. With this subsystem, the lower and upper approximation operators
are in fact the interior and closure operators, respectively [5]. Skowron [11] stud-
ied such topological spaces in the context of information tables. Wiweger [12]
used generalized approximation operators, as interior and closure operators, by
considering the family of open sets and the family of closed sets, respectively,
in a topological space. Cattaneo [1] further generalized the subsystem based
definition in terms of an abstract approximation space, consisting of a poset,
a family of inner definable elements, and a family of outer definable elements.
The approximation operators are defined based on the two subsystems of defin-
able elements [1]. Järvinen [3] and Yao [17] studied generalized subsystem based
definitions in other algebraic systems.

Except the Pawlak’s formulation, studies on subsystem based formulation
assume that one or two subsystems are given. This imposes a limitation on the
applications of the formulation, as the construction of the subsystems may be
a challenging task. Recently, Shi [10] presented some results linking subsystems
and binary relations, based on a relational interpretation of approximation op-
erators suggested by Yao [15]. In this paper, we present a more complete study
on this topic. More specifically, we study different subsystems constructed from
different types of binary relations. Properties of subsystems and the induced
generalized approximation operators are analyzed with respect to properties of
binary relations.

2 Rough Set Approximations

Suppose U is a finite nonempty set called the universe and E ⊆ U × U is an
equivalence relation on U , that is, E is reflexive, symmetric, and transitive.
The pair apr = (U, E) is called a Pawlak’s approximation space [5, 7]. In the
subsystem based development, the rough set approximation operators are defined
in two steps. With respect to an approximation space, one first constructs a
subsystem of the power set 2U , and then approximates a subset of the universe
from below and above by two subsets in the subsystem.

An equivalence relation E induces a partition U/E of the universe. The par-
tition U/E consists of a family of pairwise disjoint subsets of the universe U ,
whose union is the universe, namely, U =

⋃
[x]E , where [x]E = {y ∈ U | xEy}

is the equivalence class containing x. All elements of [x]E cannot be differen-
tiated from x under the equivalence relation E. The equivalence class [x]E is
therefore a smallest subset of U that can be identified with respect to E, that
is, elements of [x]E can be separated from other elements of U using E. Any
nonempty subset of [x]E cannot be properly identified. The equivalence classes
are called elementary sets. A union of elementary sets can also be identified and
thus is a composed set that is definable [5, 13].

By adding the empty set ∅ and making U/E closed under set union, we
obtain a family of subsets σ(U/E), which is a subsystem of the power set 2U ,
i.e., σ(U/E) ⊆ 2U . It can be seen that σ(U/E) is closed under set complement,
intersection, and union. It is an σ-algebra of subsets of U generated by the
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family of equivalence classes U/E, that is, U/E is the basis of the σ-algebra
σ(U/E). It is also a sub-Boolean algebra of the Boolean algebra given by the
power set 2U .

An approximation space apr = (U, E) defines uniquely a topological space
(U, σ(U/E)), in which σ(U/E) is the family of all open and closed sets [5].
Moreover, the family of open sets is the same as the family of closed sets. With
respect to the subsystem σ(U/E), rough set approximations can be defined [5].
Specifically, the lower approximation of an arbitrary set A is defined as the
greatest set in σ(U/E) that is contained in A, and the upper approximation of
A is defined as the smallest set in σ(U/E) that contains A. As pointed out by
Pawlak [5], they correspond to the interior and closure of A in the topological
space (U, σ(U/E)).

Formally, rough set approximations can be expressed by the following sub-
system based definition [5, 13]: for A ⊆ U ,

apr(A) =
⋃

{X | X ∈ σ(U/E), X ⊆ A}
apr(A) =

⋂
{X | X ∈ σ(U/E), A ⊆ X}. (1)

They satisfy all properties of interior and closure operators and additional
properties [5, 13]. The subsystem σ(U/E) can be recovered from the approxima-
tion operators as follows:

σ(U/E) = {X | apr(X) = X}
= {X | apr(X) = X}. (2)

It in fact consists of the fixed points of approximation operators. The condi-
tion apr(A) = A = apr(A) is often used to study the definability of a subset A
of the universe [6, 9].

3 Generalized Rough Set Approximations

We use subsystems constructed from a non-equivalence relation to generalize the
subsystem based definition.

3.1 Remarks on Subsystem Based Formulation

For the generalization of the subsystem based definition, we want to keep some
of the basic properties of the approximation operators. The generalized approxi-
mation operators must be well defined. For those purposes, we point out several
important features of subsystem based definition.

The approximation operators defined by Equation (1) are dual operators with
respect to set complement c, that is, they satisfy the conditions:

(L0) apr(A) = (apr(Ac))c,

(U0) apr(A) = (apr(Ac))c,
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The duality of the approximation operators can be easily verified from the defi-
nition and the fact that the subsystem σ(U/E) is closed under set complement,
intersection and union.

In Equation (1), the lower approximation operator is well defined as long as
the subsystem is closed under union. Similarly, the upper approximation operator
is well defined as long as the subsystem is closed under intersection. The need for
a single subsystem is in fact sufficient, but not necessary. In general, one may use
two subsystems [1, 17]. The subsystem for the lower approximation operator must
be closed under union and the subsystem for the upper approximation operator
must be closed under intersection. In order to keep the duality of approximation
operators, elements of two subsystems must be related to each other through set
complement [17].

Approximation operators satisfy the following additional properties:

(L1) apr(∅) = ∅,

(U1) apr(U) = U,

(L2) apr(A) ⊆ A,

(U2) A ⊆ apr(A),
(L3) apr(A) = apr(apr(A)),
(U3) apr(A) = apr(apr(A)),
(L4) A ⊆ B ⇒ apr(A) ⊆ apr(B),
(U4) A ⊆ B ⇒ apr(A) ⊆ apr(B).

These properties can be easily derived from the subsystem based definition.
Properties (L1) and (U1) are special cases of (L2) and (U2), respectively. Prop-
erties (L3) and (U3) are related to the fact that the subsystem σ(U/E) consists
of the fixed points of the approximation operators. Properties (L4) and (U4)
show the monotonicity of approximation operators with respect to set inclusion.
Those properties are direct consequences of the subsystem based definition. It is
reasonable to expect that generalized definitions keep those properties.

3.2 Construction of Subsystems

Let R denote a binary relation on the universe U . For two elements x, y ∈ U ,
if xRy, we say that y is R-related to x. For any element x ∈ U , its successor
neighborhood Rs(x) is defined as [15]:

Rs(x) = {y | xRy}. (3)

When the relation R is an equivalence relation, Rs(x) is the equivalence class
containing x. For a subset of universe A ⊆ U , its successor neighborhood can be
defined by extending the successor neighborhood:

Rs(A) =
⋃

x∈A

Rs(x). (4)

By the definition, we have Rs(∅) = ∅.
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Independent of the properties of the binary relation, the successor neighbor-
hood operator Rs have the properties: for A, B ⊆ U ,

(s1) Rs(A ∩ B) ⊆ Rs(A) ∩ Rs(B),
(s2) Rs(A ∪ B) = Rs(A) ∪ Rs(B),
(s3) A ⊆ B =⇒ Rs(A) ⊆ Rs(B).

Property (s2) trivially follows from the definition. Properties (s1) and (s3) follow
from property (s2).

Let O(U) denote the family of neighborhoods Rs(X) for all X ⊆ U . That is,

O(U) = {Rs(X) | X ⊆ U}. (5)

The family of their complements is given by:

C(U) = {Xc | X ∈ O(U)}. (6)

Independent of the properties of the binary relation, the two families have the
properties:

(o1) ∅ ∈ O(U),
(c1) U ∈ C(U),
(o2) O(U) is closed under set union,

(c2) C(U) is closed under set intersection.

By properties (c1) and (c2), C(U) is a closure system [2]. In general, O(U) is not
closed under set intersection and C(U) is not closed under union. Furthermore,
the two families are not necessarily the same.

By the properties of the two subsystems and discussion in the last subsection,
we can conclude that they have all the desired properties for the generalization
of approximation operators.

With respect to a binary relation, one can define other types of neighbor-
hoods, such as the predecessor neighborhoods, predecessor or successor neigh-
borhoods, and predecessor and successor neighborhood [15]. The corresponding
subsystems can be similarly constructed.

3.3 Rough Set Approximations

Based on the two families O(U) and C(U), we define a pair of lower and upper
approximation operators by generalizing Equation (1):

apr(A) =
⋃

{X | X ∈ O(U), X ⊆ A},

apr(A) =
⋂

{X | X ∈ C(U), A ⊆ X}. (7)

By properties (o2) and (c2), this definition is well defined [17]. Furthermore, the
operator apr is the closure operator of the closure system C(U).
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The generalized approximation operators are dual operators satisfying prop-
erties (L0)-(L4) and (U0)-(U4). The two subsystems can be recovered from the
the fixed points of lower and upper approximations:

O(U) = {X | apr(X) = X},

C(U) = {X | apr(X) = X}.

The generalized formulation therefore preserves the basic important features of
the original formulation.

Example 1. This simple example illustrates the main ideas of the generalized
approximation operators. Consider a universe U = {a, b, c}. A binary relation R
is given by:

aRa, aRb, bRa, bRb, cRb.

From Equation (3), R-related elements for each member of U are given by:

Rs(a) = {a, b}, Rs(b) = {a, b}, Rs(c) = {b}.

The subsystems O(U) and C(U) are:

O(U) = {∅, {b}, {a, b}},

C(U) = {U, {a, c}, {c}}.

According to the definition of approximation operators, we have:

apr(∅) = ∅, apr(∅) = {c},
apr({a}) = ∅, apr({a}) = {a, c},
apr({b}) = {b}, apr({b}) = U,
apr({c}) = ∅, apr({c}) = {c},
apr({a, b}) = {a, b}, apr({a, b}) = U,
apr({a, c}) = ∅, apr({a, c}) = {a, c},
apr({b, c}) = {b}, apr({b, c}) = U,
apr(U) = {a, b}, apr(U) = U.

One can establish a close relationship between subsystem based formulation
and granule based formulation. Specifically, we can express the lower approxi-
mation of A as the union of some successor neighborhoods, which leads to the
granule based definition [15]:

apr(A) =
⋃

{Rs(x) | x ∈ U, Rs(x) ⊆ A}. (8)

In a special case, we have apr(Rs(x)) = Rs(x) and apr(Rs(A)) = Rs(A). It
should be pointed out that the family of neighborhoods {Rs(x) �= ∅ | x ∈ U} is
not necessarily a covering of the universe.
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3.4 Classes of Generalized Rough Set Approximations

Binary relations can be classified based on their properties. Additional prop-
erties of a binary relation may induce further structures on the subsystems.
Consequently, we can also study classes of approximation operators according
to the properties of binary relations.

The following list summarizes the properties of binary relations:

inverse serial : for all x ∈ U, there exists a y ∈ U such that yRx,⋃

x∈U

Rs(x) = U,

serial : for all x ∈ U, there exists a y ∈ U such that xRy,

for all x ∈ U, Rs(x) �= ∅,

reflexive : for all x ∈ U, xRx,

for all x ∈ U, x ∈ Rs(x),
symmetric : for all x, y ∈ U, xRy =⇒ yRx,

for all x, y ∈ U, x ∈ Rs(y) =⇒ y ∈ Rs(x),
transitive : for all x, y, z ∈ U, [xRy, yRz] =⇒ xRz,

for all x, y, z ∈ U, [y ∈ Rs(x), z ∈ Rs(y)] =⇒ z ∈ Rs(x),
for all x, y ∈ U, y ∈ Rs(x) =⇒ Rs(y) ⊆ Rs(x).

If a relation R is inverse serial, the subsystems have the properties:

(o3) U ∈ O(U),
(c3) ∅ ∈ C(U).

Consequently, the approximation operators have the properties:

(L5) apr(U) = U,

(U5) apr(∅) = ∅.

If the relation is serial, for every x ∈ U , there exists a y ∈ U such that xRy,
namely, Rs(x) �= ∅. This implies the properties:

(o4) The system O(U) contains at least a nonempty subset of U,

(c4) The system C(U) contains at least a proper subset of U.

For the approximation operators, the corresponding properties are:

(L6) There exists a subset A of U such that apr(A) �= ∅,

(U6) There exists a subset A of U such that apr(A) �= U.

A reflexive relation is both inverse serial and serial. The induced approximation
operators satisfy properties (L5), (L6), (U5), and (U6).
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If the binary relation R is reflexive and transitive, (U,O(U)) is a topological
space with O(U) as the family of open sets [4, 8]. In this case, we have:

(o5) O(U) is closed under set intersection,

(c6) C(U) is closed under set union.

Then, we have additional properties of approximation operators:

(L7) apr(A ∩ B) = apr(A) ∩ apr(B),
(U7) apr(A ∪ B) = apr(A) ∪ apr(B).

The approximation operators are indeed the topological interior and closure
operators.

If the binary relation is an equivalence relation, Rs(x) is the equivalence class
containing x. The two systems become the same, that is, O(U) = C(U). This
leads to the following properties of approximation operators:

(L8) apr(A) = apr(apr(A)),
(L8) apr(B) = apr(apr(A)).

It is clear that the standard rough set approximation operators have all the
properties we have discussed so far.

4 Conclusion

The subsystem based formulation provides an important interpretation of the
rough set theory. It allows us to study the rough set theory in the contexts of
many algebraic systems. This leads naturally to the generalization of rough set
approximations.

By extending the subsystem based definition, we examine the generalized
approximation operators by using non-equivalence relations. Two subsystems
are constructed from a binary relation, and approximation operators are defined
in term of the two subsystems. The generalized approximation operators preserve
many of the basic features of the standard rough set approximation operators.
The properties of binary relations, subsystems, and approximation operators are
linked together. Several classes of approximation operators are discussed with
respect to different types of binary relations.

A connection is also established between subsystem based formulation and
granule based formulation. In general, it is useful to study further their relation-
ships to the element based formulation.
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