
Duality in Knowledge Compilation Techniques�

Neil V. Murray1 and Erik Rosenthal2

1 Department of Computer Science, State University of New York, Albany, NY 12222, USA
nvm@cs.albany.edu

2 Department of Mathematics, University of New Haven, West Haven, CT 06516, USA
erosenthal@newhaven.edu

Abstract. Several classes of propositional formulas have been used as target lan-
guages for knowledge compilation. Some are based primarily on c-paths (essen-
tially, the clauses in disjunctive normal form); others are based primarily on d-
paths. Such duality is not surprising in light of the duality fundamental to classical
logic. There is also duality among target languages in terms of how they treat links
(complementary pairs of literals): Some are link-free; others are pairwise-linked
(essentially, each pair of clauses is linked). In this paper, both types of duality are
explored, first, by investigating the structure of existing forms, and secondly, by
developing new forms for target languages.

1 Introduction

Several classes of propositional formulas have been used as target languages for knowl-
edge compilation, including Horn clauses, ordered binary decision diagrams, tries1, and
sets of prime implicates/implicants—see, for example, [2, 3, 8, 12, 20, 21]. The discov-
ery of formula classes that have properties that are useful for target languages is ongoing.
Within the past several years, decomposable negation normal form [6] (DNNF), link-
less formulas called full dissolvents [15], factored negation normal form [9] (FNNF),
and pairwise-linked clause sets, in which every pair of clauses contain complementary
literals (called EPCCL in [10]), have been investigated as target languages. It is not
surprising that dualities arise when comparing target languages, but the extent of their
prevalence may be surprising.

Most research has restricted attention to conjunctive normal form (CNF). This may
be because the structure of negation normal form (NNF) can be quite complex. However,
there is growing interest in target languages that are subclasses of NNF. Decomposable
negation normal form, studied by Darwiche [5, 6], is one such class. They are linkless
and have the property that atoms are not shared across conjunctions. Every DNNF
formula is automatically a full dissolvent—the end result of applying path dissolution to
a formula until it is linkless. Although linkless, full dissolvents may share atoms across
conjunctions. It turns out that many of the applications of DNNF depend primarily on

� This research was supported in part by the National Science Foundation under grant CCR-
0229339.

1 A variation of a tree, often used to store dictionaries.

M.-S. Hacid et al. (Eds.): ISMIS 2005, LNAI 3488, pp. 182–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:nvm@cs.albany.edu
mailto:erosenthal@newhaven.edu

Duality in Knowledge Compilation Techniques 183

the linkless property and are available and equally efficient with full dissolvents [15].
Moreover, full dissolvents can be advantageous both in time and in the size of the
resulting formula.

The class FNNF of factored negation normal form formulas is introduced in [9].
They provide a canonical representation of arbitrary boolean functions. They are closely
related to BDDs, but there is a DPLL-like tableau procedure for computing them that
operates in PSPACE.

The pairwise-linked formulas introduced by Hai and Jigui [10] appear to be struc-
turally quite different from—and rather unrelated to—DNNF, full dissolvents, or to
FNNF formulas. For one thing, pairwise-linked formulas are in CNF and the others are
not; for another, pairwise-linked formulas have many links while the others are link-free.
It turns out, however, that these classes are closely related, not only through traditional
AND/OR-based duality, but also through a kind of link-based duality. These formula
classes are examined in light of both types of duality; the resulting insight leads to new
compilation techniques and to new target languages.

A brief summary of the basics of NNF formulas is presented in Section 2.1. There
is also a short discussion of negated form (NF), which is useful as the assumed input
language since any logical formula whatsoever can be converted to equivalent negated
form in linear time. Path dissolution is described in Section 2.2; greater detail can be
found in [13]. Decomposable negation normal form is also described in that section.

The class of pairwise-linked clause sets is examined in Section 3.1. Several new
observations are made, and an alternative to the compilation technique of [10] is proposed
that does not require subsumption checks. This is generalized to d-path linked formulas
in Section 3.2. Section 4 focuses on duality relationships: Both traditional and/or based
duality and link-based.

Proofs are omitted due to lack of space; they can be found in [16].

2 Linkless Normal Forms

There is growing interest [3, 11, 5, 6, 13, 19, 22] in non-clausal representations of logical
formulas. The NNF representation of a formula often has a considerable space advantage,
and many CNF formulas can be factored into an NNF equivalent that is exponentially
smaller. Similar space saving can be realized using structure sharing, for example with
tries. On the other hand, there is experimental evidence [13] that factoring a CNF formula
can provide dramatic improvements in performance for NNF based systems.

Linkless formulas have several properties desirable for knowledge compilation. In
[9], factored negation normal form (FNNF) and ordered factored negation normal form
(OFNNF), both linkless, are introduced. The latter is a canonical representation of any
logical formula (modulo a given variable ordering of any superset of the set of variables
that appear in the formula). The FNNF of a formula can be obtained with Shannon ex-
pansion. The dual Shannon expansion and the dual of FNNF are described in Section 3.2.

184 N.V. Murray and E. Rosenthal

2.1 Negated Form and Negation Normal Form

A logical formula is said to be in negated form (NF) if it uses only three binary connec-
tives, ∧,∨,⇔, and if all negations are at the atomic level. Negated from is introduced
in [9] and is useful as an input form because any logical formula can be converted to
negated form in linear time (and space). An NF formula that contains no ⇔’s is in
negation normal form (NNF).

Two literal occurrences are said to be c-connected if they are conjoined within the
formula (and d-connected if they are disjoined within the formula). A c-path (d-path) is a
maximal set of c-connected (d-connected) literal occurrences. A link is a complementary
pair of c-connected literals.

Related to factoring is the Shannon expansion of a formula G on the atom p, also
known as semantic factoring; it is defined by the identity, G ≡ (p∧G[true/p]) ∨ (¬p∧
G[false/p]), where G[β/p] denotes the replacement of all occurrences of atom p by β
in G. Observe that any formula G may be replaced by the formula on the right. In fact,
this rule can be applied to any subformula, and, in particular, to the smallest part of the
formula containing all occurrences of the variable being factored. The term semantic
factoring reflects the fact that all occurrences of the atom p within the subformula under
consideration have in effect been ‘factored’into one positive and one negative occurrence.
Darwiche’s conditioning operation, the original Prawitz Rule [18], BDDs, and Step 4 in
Rule III of the Davis-Putnam procedure [7] are closely related to Shannon expansion.

2.2 Path Dissolution and Decomposable Negation Normal Form

Path dissolution [13] is an inference mechanism that works naturally with formulas
in negation normal form. It operates on a link by restructuring the formula so that all
paths through the link are deleted. The restructured formula is called the dissolvent;
the c-paths of the dissolvent are precisely the c-paths of the original formula except
those through the activated link. Path dissolution is strongly complete in the sense that
any sequence of link activations will eventually terminate, producing a linkless formula
called the full dissolvent. The paths that remain are models of the original formula.
Full dissolvents have been used effectively for computing the prime implicants and
implicates of a formula [19, 20]. Path dissolution has advantages over clause-based
inference mechanisms, even when the input is in CNF, since CNF can be factored. The
time savings is often significant, and the space savings can be dramatic.

Let atoms(F) denote the atom set of a formula F . An NNF formula F is said to
be in decomposable negation normal form (DNNF) if F satisfies the decomposability
property: If α = α1 ∧ α2 ∧ ... ∧ αn is a conjunction in F , then i �= j implies that
atoms(αi) ∩ atoms(αj) = ∅; i.e., no two conjuncts of α share an atom. Observe
that a DNNF formula is necessarily linkless since a literal and its complement cannot
be conjoined—after all, they share the same atom. The structure of formulas in DNNF
is much simpler than the more general NNF. As a result, many operations on DNNF
formulas can be performed efficiently. Of course, obtaining DNNF can be expensive,
but if this is done once as a preprocessing step, the “expense” can be spread over many
queries.

Duality in Knowledge Compilation Techniques 185

2.3 Testing for Entailment

One common query of a knowledge base K is the question,“Does K logically entail a
clause C?” A yes answer is equivalent to (K ∧ ¬C) being unsatisfiable. Both DNNF
formulas and full dissolvents, which are linkless, can answer such a query in time linear in
the size of the knowledge base2 For DNNF formulas, this is accomplished by converting
(K ∧ ¬C) to DNNF with a technique called conditioning [6]. If the resulting DNNF
reduces to empty, then the answer to the query is yes.

Full dissolvents can also determine entailment in linear time. If a knowledge base
K is a full dissolvent, K contains no links, and all links in K ∧ ¬C go between K and
¬C; i.e., between K and a unit. Dissolving on such links strictly decreases the size of
the formula. Each operation is no worse than linear in the amount by which the formula
shrinks, so the total time required to dissolve away all links is linear in the size of K.
The formula that is produced is again linkless, and if this formula is empty, the answer
to the query is yes.

There is another approach for answering this query; it is based on Nelson’s Theorem,
a proof of which can be found in [19]:

Theorem 1. In any non-empty formula K in which no c-path contains a link, i.e., if K
is a full dissolvent, then every implicate of K is subsumed by some d-path of K. �	

A clause C can then be tested for entailment as follows: First, consider the subformula
of K consisting of all complements of literals of C. Then C is entailed if this subgraph
contains a full d-path through K. This computation can be done in time linear in the size
of K—for a proof see [15].

3 Pairwise-Linked Formulas

In Section 2, classes of linkless formulas used as target languages for knowledge com-
pilation were described. The opposite approach is considered in this section: Classes of
formulas with many links are explored. As we shall see in Section 4, there is a duality
to these two approaches.

3.1 Pairwise-Linked Clause Sets

Hai and Jigui introduced pairwise-linked clause sets in [10]. They call them EPCCL
Theories: Each Pair (of clauses) Contains Complementary Literals.This class of formulas
has a number of nice properties, including the fact that satisfiability can be determined
in linear time. The authors provide an elegant proof of this result, included here, with a
clever combination of the inclusion/exclusion principle and the observation that every
proper subset of the complete matrix, defined below, on m variables is satisfiable.

A maximal term on m variables is a clause that contains all m variables (positively or
negatively). The complete matrix (see [1]) on m variables is the clause set Cm consisting
of all 2m maximal terms. It is easy to see that Cm is minimally unsatisfiable; that is,

2 Linear time is not very impressive: The knowledge base is typically exponential in the size of
the original formula.

186 N.V. Murray and E. Rosenthal

Cm is unsatisfiable, but every subset is satisfiable. The authors use their extension rule,
defined below, to extend any (non-tautological) clause3 to a logically equivalent set
of maximal terms. They observe that a clause set is thus unsatisfiable if and only if
extending every clause to maximal terms produces all of Cm, i.e., exactly 2m clauses.
As a result, satisfiability can be reduced to a counting problem. The authors use the
inclusion/exclusion principle, stated below, to do this count in linear time on pairwise-
linked clause sets.

The extension rule can be defined as follows: Let C be a clause, and let p be an atom
not appearing in C. Then the clause set C ′ = {C ∨ p, C ∨ p̄} is the extension of C with
respect to p. Observe that C ′ is logically equivalent to C. With repeated applications of
extension, a set of maximal terms equivalent to any clause can be obtained. If m is the
size of maximal terms, then 2m−|C| is the size of the equivalent set of maximal terms.

The inclusion/exclusion principle can be stated as follows: Let P1, P2, ..., Pn be
any collection of finite sets. Then (∗) | ∪n

i=1 Pi| =
∑n

i=1 |Pi| − ∑
1≤i<j≤n |Pi ∩

Pj | + . . . + (−1)n+1|P1 ∩ P2 ∩ . . . ∩ Pn|.
Given a set F = {C1, . . . , Cn} of clauses (with m variables), let Pi denote the

set of maximal terms obtained by extending Ci. Then F is equivalent to
⋃n

i=1 Pi and

thus is satisfiable iff
∣
∣
∣
⋃n

i=1 Pi

∣
∣
∣ < 2m. Observe that, for pairwise-linked clause sets,

since the Ci’s are pairwise linked, the sets Pi are pairwise disjoint. Thus, while for
arbitrary clause sets the inclusion/exclusion principle may be impractical to use, for
pairwise-linked clause sets, the formula (∗) reduces to | ∪n

i=1 Pi| =
∑n

i=1 |Pi|.
The satisfiability of a pairwise-linked clause set can thus be determined in linear

time by determining whether
∑n

i=1 |Pi| =
∑n

i=1 2m−|Ci| is 2m. Determining whether
a clause is entailed by a pairwise-linked clause set can also be done in polynomial time.
If F is the clause set, and C = {p1, p2, ..., pk} is the clause, then F |= C iff F ∧ ¬C is
unsatisfiable. Since ¬C can be thought of as a set of unit clauses, whether F |= C can be
determined by finding a pairwise-linked clause set that is equivalent to F ∪ ⋃k

i=1{pi}.
The computation time will be polynomial if the equivalent pairwise-linked clause set
can be constructed in polynomial time.

The method used by Hai and Jigui to accomplish this is simple and elegant. If {p}
is a unit clause to be added to F , partition F into three sets of clauses: Let F1 be the
set of clauses containing p̄, let F2 be the set of clauses containing p, and let F3 be
the remaining clauses. The clauses of F are of course already pairwise linked, so we
need only be concerned about links between one clause in F and the unit clause {p}.
The clauses in F1 are already linked to {p}, and {p} subsumes each clause in F2, so
they may be deleted. If C is a clause in F3, then extend C with respect to p, producing
C ∪ {p̄} and C ∪ {p}. The latter is subsumed by p and thus may be deleted. We thus
have a pairwise linked clause set that is logically equivalent to F ∪ {{p}}. Observe that
the method used to produce this clause set amounts to the following: Add the unit {p}
to the given pairwise-linked clause set, delete all clauses subsumed by the unit, and add
p̄ to all clauses not containing p̄. This process is clearly linear in the size of the original
clause set F and thus is at most quadratic for adding several unit clauses. The results of
this discussion are summarized in the next theorem.

3 Tautologies cannot be extended to maximal terms because they contain an atom and its negation.

Duality in Knowledge Compilation Techniques 187

Theorem 2. (Hai and Jigui [10]) If F is a set of pairwise-linked clauses, then determin-
ing whether F is satisfiable can be done in time linear in the size of F , and whether F
entails a given clause can be determined in polynomial time. �	
A note of caution: The extension rule can be used to create an equivalent pairwise-linked
set of clauses F ′ from any clause set F , and these operations are polynomial in F ′.
However, F ′ may be exponentially larger than F .

Quite a bit more can be said about pairwise-linked clause sets. Recall that a literal
occurring in a clause set is said to be pure if its complement does not occur in the clause
set. It is well known (and very easy to verify) that a clause set is unsatisfiable if and only
if the clause set produced by removing all clauses containing pure literals is unsatisfiable.
The next theorem may therefore be surprising — see [16] for a proof.

Theorem 3. Let F be an unsatisfiable set of tautology-free pairwise-linked clauses.
Then F contains no pure literals. �	

It is often desirable to work with minimally unsatisfiable clause sets, but, typically, it
is not easy to find such a set, even knowing that the clause set is unsatisfiable. The next
theorem may therefore also be surprising. (The proof — see [16] — is immediate from
observations in [10], but there is also an elegant proof that relies only on first principles.)

Theorem 4. Let F be an unsatisfiable set of tautology-free pairwise-linked clauses.
Then F is minimally unsatisfiable. �	

3.2 DPL Formulas

The class of pairwise-linked formulas discussed in Section 3.1 is restricted to CNF. Not
surprisingly, there is a corresponding class of NNF formulas that contains the CNF class
as a special case; they are called d-path linked (DPL) formulas. Satisfiability of certain
DPL formulas can also be determined in polynomial time, and so there is the potential
advantage that such an NNF formula may be exponentially smaller than the equivalent
pairwise-linked clause set.

An NNF formula G is said to be d-path linked if every pair of distinct d-paths is
linked, and if no d-path contains more than one occurrence of an atom. Note that the
latter condition forces each d-path, which is an occurrence set, to correspond exactly to a
non-tautological clause in a CNF equivalent of G; i.e., the set of d-paths is an equivalent
pairwise-linked clause set.

It may seem that working with DPL formulas is impractical. Determining whether
an NNF formula is d-path linked would appear to be as hard as determining whether a
clause set is pairwise-linked, and it would appear that few arbitrary NNF formulas are in
this class. A DPL formula can be obtained by factoring a pairwise-linked clause set, but
then the full cost of producing the clause set must be paid. Nevertheless, the situation is
more promising than this.

A compilation algorithm is presented in [10] that requires CNF input and produces a
pairwise-linked clause set as output. At the heart of the algorithm is a triply-nested loop;
at the innermost level resides a subsumption check. Here, a compilation algorithm is
introduced that does not use subsumption and that compiles arbitrary formulas directly
into DPL formulas. The key to the algorithm is the dual Shannon expansion of a formula
G, which is defined to be ¬SE(¬G, p) = (p ∨ G[false/p) ∧ (¬p ∨ G[true/p]).

188 N.V. Murray and E. Rosenthal

The dual of the FNNF operator is a DPL formula called disjunctive factored negation
normal form; it is defined using duality by D-FNNF(L,F) = ¬ FNNF(L,¬F).

If pi is chosen so that i is maximal, the result is called ordered D-FNNF and denoted
D-OFNNF. The remarks about FNNF apply in a straightforward but dual manner to these
formulas. Thus a knowledge base will compile to a formula that can be regarded as a
binary tree with root 1, and whose leaves do not have leaf siblings. Branches of D-FNNF
(FNNF) trees correspond to d-paths (c-paths). Just as FNNF formulas have no c-links,
in D-FNNF there are no d-links. But it is evident from the definition that the d-paths are
pairwise linked: The left and right subtrees are rooted at p and ¬p, respectively, and so
all branches within the left subtree contain p, and all branches within the right subtree
contain ¬p.4

If a knowledge base K is compiled by the D-OFNNF operator, the question, Given
clause C = {p1, . . . , pn}, does K entail C, i.e., is K∧¬C unsatisfiable? can be answered
as follows: Substitute 0 for pi and 1 for ¬pi, 1 ≤ i ≤ n, throughout D-OFNNF(L,K) and
apply the SIMP rules. If the query is entailed by K, the tree simplifies to 0. This process
is linear in D-OFNNF(L,K). It is interesting to note that for an arbitrary entailment F |=
C, determining whether F ∧ ¬C is unsatisfiable cannot done by substituting constants;
indeed, this is an NP-complete problem. But for a D-OFNNF tree, simplification alone
is sufficient because the D-OFNNF of an unsatisfiable formula is a root labeled 0.5

It is not always necessary to perform all the substitutions and simplifications to
determine whether the query is entailed. Suppose C is an implicate of K—i.e., suppose
K |= C. Then ¬C |= ¬K, so an assignment making all literals of C false must falsify
K. This viewpoint is useful because, just as branches of an OFNNF formula represent
satisfying interpretations, D-OFNNF branches represent falsifying ones; i.e., setting all
literals on a branch to false falsifies the formula. Thus, the set of literals labeling a branch
is an implicate of the formula. Recall that an implicate is prime if it is minimal in the
sense that no proper subset is also an implicate.

Lemma 1. Let F be an arbitrary logical formula, and let IP be a clause containing q
such that F ∧ ¬(IP − {q}) is not unsatisfiable. Then IP is a prime implicate of F iff
IP − {q} is a prime implicate of F ∧ ¬q. �	
Theorem 5. Let the nodes on branch B in D-OFNNF(L,K) be labeled q1, . . . , qm, in
that order, so that qm is the leaf. Then there is a unique subset IP of {q1, . . . , qm} that
is a prime implicate of K. Moreover, IP contains qm. �	
Theorem 5 provides another way to test a clause C = {p1, . . . , pn} for entailment.
Suppose the tree is stored so that each node has a bit vector indicating the branch leading
to it from the root. The occurrences of pn in the tree may be scanned, and each node’s
vector can be examined to determine whether p1, . . . , pn−1 are on that branch. Such
branches are consistent with C. If a consistent branch is found in which pn is not a
leaf, then C is not entailed by K (since the assignment falsifying every literal on this
branch falsifies C but not K). If no such branch is found, substitute 0 for pn and 1 for
¬pn, apply SIMP , and repeat for pn−1. Queries for which the answer is yes require as

4 In a dual manner, an FNNF formula represents a pairwise d-linked DNF clause set.
5 But let us not forget that building D-OFNNF may be expensive.

Duality in Knowledge Compilation Techniques 189

much computation time with either approach, but if the answer is no, this method may
terminate more quickly.

4 Dualities

That duality should arise in a variety of ways in the study of propositional languages
is hardly surprising. But in this setting it is so pervasive that a brief synopsis may be
illuminating.

Perhaps the most familiar duality is that of CNF and DNF. The latter is (conjunctive)
link-free, but typically has many d-links; the former is free of d-links but may have many
c-links. From Nelson’s Theorem [17], we know that the prime implicants of a tautology-
free CNF formula are present as non-contradictory c-paths, and the prime implicates
of a contradiction-free DNF formula are present as non-tautological d-paths. It turns
out that producing implicants and implicates syntactically is the result not of CNF/DNF
per se, but of the absence of links, which is a side effect of converting to CNF or to
DNF.

Computing the full dissolvent of a formula removes links without producing DNF;
similarly, the disjunctive dual of dissolution produces a formula without d-links. This
leads to a version of Nelson’s Theorem based only on the absence of links [19].

The work of Hai and Jigui [10] pointed towards an additional layer of duality—
namely that implicates can be extracted not only from c-linkless formulas, but also from
pairwise-linked clause sets. Thus entailment testing is facilitated either by removing
links or by adding enough of them. An immediate consequence is that a DNF clause
can be polynomially6 checked for being a prime implicant of a pairwise d-linked DNF
formula.

In [15, 9], Shannon expansion is used to compile to DNNF and to FNNF; these
target languages are regarded essentially as c-linkless. But of course FNNF is an NNF
generalization of a pairwise d-linked DNF formula, and this realization led the authors
to develop D-FNNF, an NNF generalization of a pairwise c-linked CNF formula, using
the dual of Shannon expansion. It is by now obvious that the prime implicant status of
literal conjunctions can be conveniently tested using OFNNF.

Nelson’s Theorem provides a duality between the type of link that is absent and the
type of query that is easily answered. The additional duality between many links and the
absence of links induces a symmetry: Both prime implicants and prime implicates can be
tested with both pairwise-linked formulas and with link-free formulas. This link-based
duality — link-free versus d-path linked — appears to be heretofore unnoticed.

References

1. Bibel, W., Tautology testing with a generalized matrix method, Theoretical Computer Science
8 (1979), 31–44.

2. Bryant, R. E., Symbolic Boolean manipulation with ordered binary decision diagrams, ACM
Computing Surveys 24, 3 (1992), 293–318.

6 We repeat the caveat that the pairwise-linked formula may be large.

190 N.V. Murray and E. Rosenthal

3. Cadoli, M., and Donini, F. M., A survey on knowledge compilation, AI Communications 10
(1997), 137–150.

4. Chatalic, P. and Simon, L., Zres: The old Davis-Putnam procedure meets ZBDDs. Proc.
CADE’17, David McAllester, ed., LNAI 1831 (June 2000), Springer-Verlag, 449-454.

5. Darwiche,A., Compiling devices:A structure-based approach, Proc. International Conference
on Principles of Knowledge Representation and Reasoning (KR98), Morgan-Kaufmann, San
Francisco (1998), 156–166.

6. Darwiche, A., Decomposable negation normal form, J.ACM 48,4 (2001), 608–647.
7. Davis, M. and Putnam, H. A computing procedure for quantification theory. J.ACM 7, 1960,

201–215.
8. Forbus, K.D. and de Kleer, J., Building Problem Solvers, MIT Press, Mass. (1993).
9. Hähnle, R., Murray, N.V., and Rosenthal, E. Normal forms for knowledge compilation, Proc

ISMIS 2005, Saratoga Springs, NY, LNAI, Springer-Verlag, to appear.
10. Hai, L. and Jigui, S., Knowledge compilation using the extension rule, J. Automated Reason-

ing, 32(2), 93-102, 2004.
11. Henocque, L., The prime normal form of boolean formulas. Submitted. Preliminary version

available as a technical report at http://www.Isis.org/fiche.php?id=74&page=.
12. Marquis, P., Knowledge compilation using theory prime implicates, Proc. International Joint

Conference on AI (IJCAI) (1995), Morgan-Kaufmann, San Mateo, California, 837-843.
13. Murray, N.V., and Rosenthal, E. Dissolution: Making paths vanish. J.ACM 40,3 (July 1993),

504–535.
14. Murray, N.V., and Rosenthal, E. On the relative merits of path dissolution and the method of

analytic tableaux, Theoretical Computer Science 131 (1994), 1–28.
15. Murray, N.V. and Rosenthal E.,Tableaux, path dissolution, and decomposable negation normal

form for knowledge compilation, Proc TABLEAUX 2003, Rome, Italy, LNAI 2796 (M. Mayer
and F. Pirri, Eds.), Springer-Verlag, 165-180.

16. Murray, N.V., and Rosenthal, E. Knowledge compilation and duality, Technical Report
SUNYA-CS-04-07, Dept of Computer Science, SUNY Albany, October, 2004.

17. Nelson, R.J., Simplest normal truth functions, J. of Symbolic Logic 20, 105-108 (1955).
18. Prawitz, D. A proof procedure with matrix reduction. Lecture Notes in Mathematics 125,

Springer-Verlag, 1970, 207–213.
19. Ramesh, A., Becker, G. and Murray, N.V. CNF and DNF considered harmful for computing

prime implicants/implicates. J. of Automated Reasoning 18,3 (1997), Kluwer, 337–356.
20. Ramesh, A. and Murray, N.V. An application of non-clausal deduction in diagnosis. Expert

Systems with Applications 12,1 (1997), 119-126.
21. Selman, B., and Kautz, H., Knowledge compilation and theory approximation, J.ACM 43,2

(1996), 193-224.
22. Walsh, T., Non-clausal reasoning, Workshop on Disproving Non-Theorems, Non-Validity, and

Non-Provability, IJCAR 2004, Cork, Ireland.

	Introduction
	Linkless Normal Forms
	Negated Form and Negation Normal Form
	Path Dissolution and Decomposable Negation Normal Form
	Testing for Entailment

	Pairwise-Linked Formulas
	Pairwise-Linked Clause Sets
	DPL Formulas

	Dualities

