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Abstract. Efficient processing of complex streaming data presents multiple chal-
lenges, especially when combined with intelligent detection of hidden anomalies
in real time.We label such systems StreamAnomaly Monitoring Systems (SAMS),
and describe the CMU/Dynamix ARGUS system as a new kind of SAMS to detect
rare but high value patterns combining streaming and historical data. Such patterns
may correspond to hidden precursors of terrorist activity, or early indicators of the
onset of a dangerous disease, such as a SARS outbreak. Our method starts from
an extension of the RETE algorithm for matching streaming data against multiple
complex persistent queries, and proceeds beyond to transitivity inferences, condi-
tional intermediate result materialization, and other such techniques to obtain both
accuracy and efficiency, as demonstrated by the evaluation results outperforming
classical techniques such as a modern DMBS.

1 Introduction

Efficient processing of complex streaming data presents multiple challenges. Among
data intensive stream applications, we identify an important sub-class which we call
Stream Anomaly Monitoring Systems (SAMS). A SAMS monitors transaction data
streams or other structured data streams and alerts when anomalies or potential hazards
are detected. The system is expected to deal with very-high data-rate streams, many
millions of records per day, yet the matches of the anomaly conditions should be very
infrequent. However, the matches may generate very high-urgency alerts, may be fed
to decision-making systems, and may invoke significant actions. The conditions for
anomalies or potential hazards are formulated as persistent queries over data streams by
experienced analysts. The data streams are composed of homogeneous records such as
money transfer transaction records or hospital inpatient admission records.

Examples motivating a SAMS can be found in many domains including banking,
medicine, and stock trading. For instance, given a data stream of FedWire money trans-
fers, an analyst may want to find linkages between big money transfer transactions
connected to suspected people or organizations. Given data streams from all the hospi-
tals in a region, a SAMS may help with early alerting of potential diseases or bio-terrorist
events. In a stock trading domain, connections between trading transactions with certain
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features may draw an analyst’s attention to check whether insider information is being
illegally used.

In this paper, we are concerned with optimal incremental evaluation plans of rarely
matching persistent queries over high data rate streams and large-volume historical data
archives. We focus on exploring the very-high-selectivity query property to produce
good/optimal incremental evaluation plans to solve the performance problem posed by
the very-large-volume historical data and very-high stream data rates.

The basic algorithm for the incremental evaluation is a variant of the Rete algorithm
which is widely used in rule-based production systems. The Rete match algorithm [7]
is an efficient method for matching a large collection of patterns to a large collection of
objects. By storing partially instantiated (matched) patterns, Rete saves a significant com-
putation that would otherwise have to be re-computed repetitively in recursive matching
of the newly produced working elements. The adapted Rete for stream processing adopts
the same idea of storing intermediate results (partial results) of the persistent queries
matched against the historical data. New data items arriving at the system may match
with the intermediate results to significantly speed up producing the new query results.
This is particularly useful when intermediate result size is much smaller than the size
of the original data to be processed. This is exactly the case for many SAMS queries.
The historical data volume is very large, yet intermediate results may be minimized by
exploiting the very-high-selectivity query property.

ARGUS is a prototype SAMS that exploits the adapted Rete algorithm, and is built
upon the platform of Oracle DBMS. It also explores transitivity inferences, and condi-
tional intermediate result materialization, and will further incorporate complex compu-
tation sharing functionality and the Dynamix Matcher [6] into the system. The Dynamix
Matcher is an integrated part of the ARGUS project that can perform fast simple-query
filtering before joins and aggregations are processed by Rete; it has also been used for
commercial applications. In ARGUS, a persistent query is translated into a procedural
network of operators on streams and relations. Derived (intermediate) streams or re-
lations are conditionally materialized as DBMS tables. A node of the network, or the
operator, is represented as one or more simple SQL queries that perform the incremental
evaluation. The whole network is wrapped as a DBMS stored procedure.

Fig. 1. ARGUS System Architecture Fig. 2. A Rete network for Example 4
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In this paper, we present some SAMS query examples, describe the Rete-based
ARGUS design and extensions, and conclude with preliminary performance results, and
related work.

2 SAMS Query Examples

We choose the FedWire money transfer domain for illustration and experiments in this
paper. It has a single data stream that contains money transfer transaction records. We
present seven persistent query examples (one is also presented with the formulated SQL
query) which cover the SAMS query scope: selection, join, aggregation, and using views.
For more details, and more thorough analysis of the results please see [11].

Example 1. The analyst is interested in knowing if there exists a bank, which received
an incoming transaction over 1,000,000 dollars and performed an outgoing transaction
over 500,000 dollars on the same day.

Example 2. For every big transaction, the analyst wants to check if the money stayed in
the bank or left it within ten days.

Example 3. For every big transaction, the analyst wants to check if the money stayed in
the bank or left it within ten days by transferring out in several smaller transactions. The
query generates an alert whenever the receiver of a large transaction (over $1,000,000)
transfers at least half of the money further within ten days of this transaction.

Example 4. For every big transaction of type code 1000, the analyst wants to check if
the money stayed in the bank or left within ten days. An additional sign of possible fraud
is that transactions involve at least one intermediate bank. The query generates an alert
whenever the receiver of a large transaction (over $1,000,000) transfers at least half of
the money further within ten days using an intermediate bank.

SELECT ∗
FROM transaction r1, transaction r2,

transaction r3
WHERE r2.type code = 1000 and
r3.type code = 1000 and
r1.type code = 1000 and
r1.amount > 1000000 and
r1.rbank aba = r2.sbank aba and

(continue)

r1.benef account = r2.orig account and
r2.amount > 0.5 ∗ r1.amount and
r1.tran date <= r2.tran date and
r2.tran date <= r1.tran date + 10 and
r2.rbank aba = r3.sbank aba and
r2.benef account = r3.orig account and
r2.amount = r3.amount and
r2.tran date <= r3.tran date and
r3.tran date <= r2.tran date + 10;

Example 5. Check whether any bank has incoming transactions of $100,000,000 or
more and outgoing transactions of $50,000,000 or more on one particular day.

Example 6. Get the transactions of Citibank and Fleet on a particular day.

Example 7. The analyst is interested in knowing whether Citibank has conducted a
transaction on a particular day with the amount exceeding 1,000,000 dollars.
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3 ARGUS Profile System Design

Figure 1 shows the SAMS dataflow and the ARGUS system architecture. Analysts selec-
tively formulate the conditions of anomalies or potential hazards as persistent queries,
and register them with the system. Data records in streams arrive continuously. Regis-
tered queries are scheduled periodic executions over the new data records, and return
any new results as alerts. The ARGUS system contains two components, the database
created on the Oracle DBMS, and the Rete construction module, ReteGenerator, which
translates persistent queries into Rete networks. Wrapped in a stored procedure, a Rete
network encodes an instance of the adapted Rete algorithm. Registering a persistent
query in the database includes creating and initializing the intermediate tables based on
the historical data, and storing and compiling the Rete network procedure.

QueryTable is a system table that records query information, one entry per query.
Each entry contains the query ID, the procedure name to call, the query priority, and
a boolean flag indicating whether the query is active or not. Do queries() is a system
level procedure that finds all the active Rete networks from QueryTable in the order of
their priorities, and executes them one by one. New data arrive continuously and are
appended to data tables. The active Rete networks are scheduled periodical runs on new
data arrivals, and generate alerts when any persistent query matches the new data.

3.1 Adapted Rete Algorithm

Let n and m denote the old data sets, and ∆n and ∆m the new much smaller incremental
data sets, respectively. By Relational Algebra, a selection operation σ on data n + ∆n
is equivalent to σ(n + ∆n) = σ(n) + σ(∆n). σ(n) is the set of old results that is
materialized. To evaluate incrementally, only the computation on ∆n is needed (σ(∆n)).
Similarly, for a join operation � on (n + ∆n) and (m + ∆m), we have (n + ∆n) �

(m + ∆m) = n � m + ∆n � m + n � ∆m + ∆n � ∆m. n � m is the set of old
results that is materialized. Only the computations on ∆n � m+n � ∆m+∆n � ∆m
portion are needed, which can be decomposed to three joins. When ∆n and ∆m are
small compared to n and m, the time complexity of the incremental join is linear with
O(n + m).

Figure 2 shows a Rete network for Example 4. A satisfied result set contains joins of
three tuples each of which satisfies a set of selection predicates, identified as Pattern 1,
Pattern 2, and Pattern 3, respectively. To allow incremental evaluation, each intermediate
result storage comprises two parts, the main part that stores intermediate results for
historical data, and the delta part that stores the intermediate results for new data.

In summary, a Rete network performs incremental query evaluation over the delta
part (new stream data) and materializes intermediate results. The incremental evaluation
makes the execution much faster. However, a potential problem is that when any ma-
terialized intermediate table grows very large, thus requiring many I/O operations, the
performance degrades severely. Fortunately, since queries are expected to be satisfied
infrequently, there are usually highly selective conditions that make the intermediate
tables fairly small. We investigated several optimization techniques to minimizing the
sizes of intermediate result tables.
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3.2 Translating SQL Queries into Rete Networks

A query may contain multiple SQL statements and a single SQL statement may contain
unions of multiple SQL terms. Multiple SQL statements allow an analyst to define
views. Each SQL term is mapped to a sub-Rete network. These sub-Rete networks are
then connected to form the statement-level sub-networks. And the statement-level sub-
networks are further connected based on the view references to form the final query-level
Rete network. For more details, please see [11].

ReteGenerator. ReteGenerator contains three components: the SQL Parser, the Rete
Topology Constructor, and the Rete Coder. The SQL Parser parses a query (a set of
SQLs) to a set of parse trees. The Rete Topology Constructor rearranges the connections
of nodes in the sub-parse tree of each SQL term to obtain the desired sub-Rete network
topologies. And the Rete Coder generates the Rete network code and corresponding
DDL statements in Oracle PL/SQL language by traversing the reconstructed parse trees
and instantiating the code templates.

The Rete Topology Constructor takes three steps to construct the sub-Rete network
topology for each SQL term based on its where clause sub-parse tree. First, predicates
are classified based on the tables they use. Second, the classified predicate sets are
sorted based on the number of tables that the sets contain. Finally, the new subtree is
reconstructed bottom-up. Single-table predicate sets correspond to leaf nodes. A new
node joining two existing nodes is selectively created if a join predicate set exists. The
process continues until all nodes are merged into a single node. Figure 3 shows the
reconstructed where clause subtree of the query Example 4.

Aggregation and Union. An SQL term may contain groupby/having clauses. If it also
contains a where clause, the Rete network is generated for the where clause and
the output of the Rete network is stored in a table, which will be the input to the
groupby/having clauses. Then the system does the operations of grouping/having on the
whole input table, and finds the difference between the current results and the previous
results. These grouping operations on whole input sets will be replaced by incremental
aggregation in future.

Fig. 3. The ReconstructedWhere clause Sub-
tree for Example 4

Fig. 4. Execution Times of Q1-Q7
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3.3 Improvements on Rete Network

Transitivity Inference. Transitivity Inference explores the transitivity property of com-
parison operators, such as >, <, and =, to infer hidden selective single-table conditions
from a set of existing conditions. For example, in Example 4, the query has the fol-
lowing conditions (the first is very selective): r1.amount > 1000000, r2.amount >
r1.amount∗0.5, and r3.amount = r2.amount. The first two conditions imply a selec-
tive condition on r2: r2.amount > 500000. Further, the third condition and the newly
derived condition imply another selective condition on r3: r3.amount > 500000. These
inferred conditions have significant impact on performance. The first level intermediate
tables, filtered by the highly selective selection predicates, are made very small, which
saves significant computation on subsequent joins.

Conditional Materialization. If intermediate results grow large, for instance in join
queries where single-table selection predicates are not selective and transitivity inference
is not applicable, pipelined operation is preferable to materialization.AssumeTransitivity
Inference is not applicable by turning the module off, Example 4 is such a query. The
two single-table selection predicates (r2.type code = 1000, r3.type code = 1000) are
highly non-selective, the sizes of the intermediate results are close to that of the original
data table. Aware of the table statistics, or indicated by users, such a materialization can
be conditionally skipped, which we call Conditional Materialization. In our experiments,
Rete network Q11 is a Conditional Rete network for Example 4 while Q10 is another
one for the same example. They are similar except that Q11 does not materialize the
results of the two non-selective selection predicates.

User-Defined Join Priority. Join priority specifies the join order that the Rete network
should take. It is similar to the reordering of join operators in traditional query optimiza-
tion. The ReteGenerator currently accepts user-defined join priority. We are working
on applying query optimization techniques based on table statistics and cost models to
automatically decide the optimal join order.

3.4 Current Research

We are designing complex extensions to incorporate computation sharing, cost-based
optimization, incremental aggregation, and the Dynamix Matcher. Computation sharing
among multiple queries adds much more complexity to the system. We are developing
the schemes to index query predicates and predicate sets, and algorithms to identify and
rearrange predicate sets to minimize intermediate result sizes in the shared networks.
Cost-based optimization automatically decides the join order and the choice of condi-
tional materialization based on table statistics. Incremental aggregation aggregates data
items by maintaining sufficient statistics instead of the whole group items. For example,
by preserving the SUM and COUNT, up-to-date AVERAGE can be calculated without
accessing the historical data. The Dynamix Matcher is a fast query matching system for
large-scale simple queries that exploits special data structures. We are working on the
scheme of rerouting the partial query evaluations to Dynamix Matcher when they can
be efficiently carried out by the Dynamix Matcher.
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4 Experimental Results

4.1 Experiment Setting

The experiments compared performance of the prototype ARGUS to the Oracle DBMS
that ARGUS was built upon, and were conducted on an HP computer with 1.7G CPU
and 512M RAM, running Windows XP.

Data Conditions. The data conditions are derived from a database of synthesized Fed-
Wire money transfer transactions. The database D contains 320,006 records. The times-
tamps of the data span 3 days. We split the data in two ways, and most of the experiments
were conducted on both data conditions:

– Data1. Old data: the first 300, 000 records of D. New data: the remaining 20, 006
records of D. This data set provides alerts for most of the queries being tested.

– Data2. Old data: the first 300, 000 records of D. New data: the next 20, 000 records
of D. This data set does not generate alerts for most of the queries being tested.

Queries. We tested eleven Rete networks created for the seven queries described in
Section 2. Q1-Q7 are the Rete networks for the seven examples created in a common
setting, respectively: no hidden condition is added to the original queries, and Transitivity
Inference module is turned on. Q8 and Q10 are variants of Example 2 and 4 that are
generated without Transitivity Inference. Q9 is the variant of Example 4 whose original
SQL query is enhanced with hidden conditions. Q11 is a Conditional Rete network of
Example 4.

When running the original SQL queries, we combined the historical (old) data and
the new data (stream). It takes some time for Rete networks to initialize intermediate
results, yet it is a one-time operation. Rete networks provide incremental new results,
while original SQL queries only provide whole sets of results.

4.2 Results Interpretation

Figure 4 summarizes the results of running the queries Q1-Q7 on the two data condi-
tions. For most of the queries, Rete networks with Transitivity Inference gain significant
improvements over directly running the SQL queries. For more details, please see [11].

Aggregation. Q3 and Q5 are the two queries involving aggregations. Q3’s Rete network
has to join with the large original table. And Rete’s incremental evaluation scheme is not
applicable to Q5. This leads to limited or zero improvement of the Rete procedures. We
expect incremental aggregation will provide noticeable improvements to these queries.

Transitivity Inference. Example 2 and 4 are queries that benefit from Transitivity Infer-
ence. Figure 5 shows the execution times for these two examples. The inferred condition
amount > 500000 is very selective with selectivity factor of 0.1%. Clearly, when Tran-
sitivity Inference is applicable and the inferred conditions are selective, a Rete network
runs much faster than its non-TI counterpart and the original SQL.

Note that in Figure 5 SQL TI (Q9), Example 4 with manually added conditions,
runs significantly faster than the original one. This suggests that this type of complex
transitivity inference is not applied in the DBMS query optimization, and may be a
potential new query optimization method for a traditional DBMS.
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Fig. 5. “Rete TI”: Rete generated with Transi-
tivity Inference. “Rete Non-TI”: Rete without
Transitivity Inference. “SQL Non-TI”: Origi-
nal SQL query. “SQL TI”: Original SQL query
with hidden conditions manually added

Fig. 6. Effect of Conditional Materialization.
Comparing the execution times of Conditional
Rete, Non-Conditional Rete, and SQL for Ex-
ample 4 on Data1 and Data2

Conditional Materialization. Assume Transitivity Inference is not applicable by turn-
ing the module off for Example 4, we obtain a Rete network Q10, and a Conditional
Rete network Q11. Figure 6 compares the execution times of the Conditional Rete net-
work, the Rete network, and original SQL. It is clear that if non-selective conditions are
present, Conditional Rete is superior to the original Rete network.

5 Related Work

TREAT [13] is a variant form of Rete that skips the materialization of intermediate join
nodes but joins all nodes in one step. Match Box algorithm [16] pre-computes a rule’s
binding space, and then has each binding independently monitor working memory for
the incremental formation of tuple instantiations. LEAPS [14] is a lazy matching scheme
that collapses the space complexity required by Rete to linear.

A generalization of Rete and TREAT, Gator [9] is a non-binary bushy tree instead
of a binary bushy tree like Rete, applied to a scalable trigger processing system [10],
in which predicate indexing provides computation sharing among common predicates.
The work on Gator networks is more general than ours with respect to employing non-
binary discrimination networks with cost model optimizations. However, [9] explores
only single tuple updates at a time, does not consider aggregation operators, and is used
for trigger condition detection instead of stream processing.

Our work is closely related to several Database research directions, including Ac-
tive Databases [8][20][18], materialized view maintenance [3], and Stream Database
systems. Some recent and undergoing stream projects, STREAM [2], TelegraphCQ [4],
and Aurora [1], etc., develop general-purpose Data Stream Management Systems, and
focus on general stream processing problems, such as high data rates, bursting data
arrivals, and various query output requirements, etc. Compared to these systems, AR-
GUS tries to solve the performance problem caused by very-large-volume historical data
and high data rates by exploiting the very-high-selectivity property of SAMS queries,
particularly optimizing incremental query evaluations.

OpenCQ, WebCQ [12], and NiagaraCQ [5] are continuous query systems for Internet
databases with incremental query evaluation schemes over data changes. NiagaraCQ’s
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incremental query evaluation is similar to Rete networks. However, it addresses the
problem of very large number of queries instead of very-large volume data and high data
rates, and the optimization strategy is sharing as much computation as possible among
multiple queries. Distinguishably, ARGUS attempts to minimize the intermediate result
sizes in both single-query Rete networks and shared multi-query Rete networks.ARGUS
applies several techniques such as transitivity inference and conditional materialization
toward this goal.

Alert [18] and Tapestry [19] are two early systems built on DBMS platforms. Alert
uses triggers to check the query conditions, and modified cursors to fetch satisfied tuples.
This method may not be efficient in handling high data rates and the large number of
queries in a stream processing scenario. Similar to ARGUS, Tapestry’s incremental
evaluation scheme is also wrapped in a stored procedure. However, its incremental
evaluation is realized by rewriting the query with sliding window specifications on the
append-only relations (streams). This approach becomes inefficient when the append-
only table is very large. Particularly, it has to do repetitive computations over large
historical data whenever new data is to be matched in joins.

There is some relevant work on inferring hidden predicates [15][17]. However, they
deal with only the simplest case of equi-join predicates without any arithmetic opera-
tors. ARGUS deals with general 2-way join predicates with comparison operators and
arithmetic operators for Transitivity Inference.

6 Conclusion

Dealing with very-large volume historical data and high data rates presents special chal-
lenges for a StreamAnomaly Monitoring System. InARGUS, Rete networks provide the
basic framework for incremental query evaluation, and the very-high-selectivity prop-
erty of SAMS queries is exploited to minimize intermediate result sizes and speed up
performance significantly. The techniques include transitivity inference, user-defined
join priority, and conditional materialization. The later two will be replaced by a more
general cost-based optimization method that will subsume them. We are also extensively
expanding the system to incorporate multi-query computation sharing, incremental ag-
gregation, and the Dynamix Matcher.
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