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Abstract. Recently, there are many researchers to design Bayesian network 
structures using evolutionary algorithms but most of them use the only one fit-
test solution in the last generation. Because it is difficult to integrate the impor-
tant factors into a single evaluation function, the best solution is often biased 
and less adaptive. In this paper, we present a method of generating diverse 
Bayesian network structures through fitness sharing and combining them by 
Bayesian method for adaptive inference. In the experiments with Asia network, 
the proposed method provides with better robustness for handling uncertainty 
owing to the complicated redundancy with speciated evolution.  

1   Introduction 

One commonly used approach to deal with uncertainty is a Bayesian network (BN) 
which represents joint probability distributions of domain. It has already been recog-
nized that the BN is quite easy to incorporate expert knowledge. BN and associated 
schemes constitute a probabilistic framework for reasoning under uncertainty that in 
recent years has gained popularity in the community of artificial intelligence. From an 
informal perspective, BN is directed acyclic graph (DAG), where the nodes are random 
variables and the arcs specify the dependency between these variables. It is difficult to 
search for the BN that best reflects the dependency in a database of cases because of the 
large number of possible DAG structures, given even a small number of nodes to con-
nect. Recently, there are many researchers to design BN structures using evolutionary 
algorithms but most of them use the only one fittest solution in the last generation [1].  

The main problem with standard evolutionary algorithms appears that they eventu-
ally converge to an optimum and thereby loose their diversity necessary for efficiently 
exploring the search space and its ability to adapt to a change in the environment 
when a change occurs. In this paper, we present a method of generating diverse evolu-
tionary Bayesian networks through fitness sharing and combining them by Bayes rule. 
It is promising to use multiple solutions which have different characteristics because 
they can deal with uncertainty by complementing each other for better robustness. 
Several works are concerned with machine learning based on evolutionary computa-
tion (EC) and combining the solutions found in the last population [2, 3, 4]. Fig. 1 
shows the basic idea of the proposed method. To show the usefulness of the method, 
we conduct experiments with a benchmark problem of ASIA network.   
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Fig. 1. The proposed ensemble model of speciated Bayesian networks 

2   Evolutionary Bayesian Networks 

As indicated by [5], evolutionary algorithm is suitable for dynamic and stochastic 
optimization problems but there are a few works to deal with the issue using evolu-
tionary Bayesian network. One important approach to learning Bayesian networks 
from data uses a scoring metric to evaluate the fitness of any given candidate network 
for the database, and applies a search procedure to explore the set of candidate net-
works [6]. Because learning Bayesian networks is, in general, an NP-hard problem 
and exact methods become infeasible, recently some researchers present a method for 
solving this problem of the structure learning of Bayesian network from a database of 
cases based on evolutionary algorithms [7].  

 Larranaga et al. carry out performance analysis on the control parameters of the 
genetic algorithms (population size, local optimizer, reproduction mechanism, prob-
ability of crossover, and mutation rate) using simulations of the ASIA and ALARM 
networks [1]. Also, they propose searching for the best ordering of the domain vari-
ables using genetic algorithms [8]. Wong et al. have developed a new approach 
(MDLEP) to learn Bayesian network structures based on the Minimum Description 
Length (MDL) principle and evolutionary programming (EP) [9]. Wong et al. propose 
a novel data mining algorithm that employs cooperative co-evolution and a hybrid 
approach to discover Bayesian networks from data [10]. They divide the network 
learning problem of n  variables into n  sub-problems and use genetic algorithms for 
solving the sub-problems.  

3   Speciated Evolutionary Bayesian Network Ensemble 

The system sets each BN with random initial structures. The fitness of Bayesian net-
work for training data is calculated using general Dirichlet prior score metric (DPSM). 
Yang reports that DPSM performs better than other scoring metrics [11]. Fitness shar-
ing using MDL difference measure which needs only small computational cost re-
scales the original fitness for diversity. Once the fitness is calculated, genetic algo-
rithm selects the best 80% individuals to apply genetic operators. The genetic opera-
tors, crossover and mutation, are applied to those selected individuals. After applying 
genetic operations, the new set of individuals forms a new population. It finishes 
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when stop criterion is satisfied. Using clustering, representative individuals are se-
lected and combined with Bayesian scheme. 

3.1   Representation 

In evolutionary algorithm, it is very important to determine the representation of an 
individual. There are several methods to encode a Bayesian network such as connec-
tion matrix and variable ordering list. Although connection matrix representation is 
simple and genetic operators can be easily implemented, additional “repair” operation 
is needed. In the structure learning of Bayesian network an ordering between nodes of 
the structure is often assumed, in order to reduce the search space. In variable order-
ing list, a Bayesian network structure can be represented by a list L  with length ,n  
where its elements jl  verify 

),(  , then )( if VllijlPal ijij ∈<∈  

Although variable ordering list can reduce search space, it has a shortcoming that only 
one Bayesian network structure can be constructed from one ordering.  
   In this paper, we devise a new chromosome representation which combines both of 
them. It does not need a “repair operator” but also provides enough representation 
power for searching diverse Bayesian network structures. In this representation, a 
Bayesian network structure can be represented by a variable ordering list L  with 
length ,n  and nn×  connectivity matrix C. The definition of L  is the same as the 
above formula but an element of matrix C is used for representing an existence of arcs 
between variables.  
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Lower left triangle describes the connection link information. 

3.2   Genetic Operators 

The crossover operator exchanges the structures of two Bayesian networks in the 
population. Since finding an optimal ordering of variables resembles the traveling 
salesman problem (TSP), Larranaga et al. use genetic operators that were developed 
for the TSP problem [8]. In their work, cycle crossover (CX) operator gives the best 
results and needs a small population size to give good results while other crossover 
operators require larger population sizes. CX operator attempts to create an offspring 
from the parents where every position is occupied by a corresponding element from 
one of the parents. The nn×  connection matrix can be represented as a string with 
length ,2Cn  because only lower left triangle area in the matrix describes useful in-

formation. Two connection matrix represented as a string can be exchanged by using 
1-point crossover.  

The displacement mutation operator (DM) is used for mutation of variable order. 
The combination of cycle crossover and the mutation operator shows better results in 
extensive tests [8]. The operator selects a substring at random. This substring is re-
moved from the string and inserted in a random place. Mutation operator for the con-
nection matrix performs one of the two operations: addition of a new connection and 
deletion of an existing connection. If the connection link does not exist and the con-
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nection entry of the BN matrix is ‘0’, a new connection link is created. If the connec-
tion link already exists, it removes the connection link.  

3.3   Fitness Evaluation 

In order to induce a Bayesian network from data, researchers proposed a variety of 
score metrics based on different assumptions. Yang et al. compared the performance 
of five score metrics: uniform prior score metric (UPSM), conditional uniform prior 
score metric (CUPSM), Dirichlet prior score metric (DPSM), likelihood-equivalence 
Bayesian Dirichlet score metric (BDe), and minimum description length (MDL) [11]. 
They concluded that the tenth-order DPSM is the best score metric. If the Dirichlet 
distribution is assumed, then the score metric can be written as 

.
)(

)(

)(

)(
)(),(

1 1 1
∏∏ ∏

= = =
′Γ
+′Γ

×
+′Γ

′Γ
=

n

i

q

j

r

k ijk

ijkijk

ijij

ij
i i

N

NN

NN

N
BPDBP  

Here, ijkN  denotes the number of cases in the given database D  in which the variable 

ix  takes the kth value ( irk  ,  ,2 ,1 …= ), and its parent )( ixPa  is instantiated as the jth 
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ijkij NN  As [11], we investigate a special case where the 

Dirichlet orders are set to a constant, say .10=′ijkN  

3.4   Fitness Sharing with MDL Measure 

There are several ways to simulate speciation. In this paper, fitness sharing technique 
is used. Fitness sharing decreases the fitness of individuals in densely populated area 
and shares the fitness with other BN’s. Therefore, it helps genetic algorithm search 
broader solution space and generate more diverse BN’s. With fitness sharing, the 
genetic algorithm finds diverse solution. The population of BN’s is defined as 

}.,,,{ _21 sizepopBBB …  

Given that fi is the fitness of an individual iB  and sh(dij) is a sharing function, the 

shared fitness fsi  is computed as follows : 
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The sharing function sh(dij) is computed using the distance value dij which means the 
difference of individuals iB  and jB  as follows:  
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Here, σs means the sharing radius. σs is set with a half of the mean of distances be-
tween each BN in initial population. If the difference of the individuals is larger than 
σs, they do not share the fitness. Only the individuals that have smaller distance value 
than σs can share the fitness. Fitness of individuals on the highest peak decreases 
when the individuals in the area are dense.  

Although there is no consensus on the distance measure for the difference of indi-
viduals iB  and ,jB  an easily acceptable measure is structural difference between 

them. Lam defines the structural difference measure in the minimum description 
length principle which is well established in machine learning [12]. To compute the 
description length of the differences we need develop an encoding scheme for repre-
senting these differences. It is clear that the structure of iB  can be recovered from the 

structure of jB  and the following information. 

 A list of the reverse arcs  
 The missing arcs of iB   

 The additional arcs of iB   

Let r, m, and a be, respectively, the number of reverse, missing, and additional arcs in 
,iB  with respect to a network .jB  Since there are )1( −nn  possible directed arcs, we 

need )]1([log2 −nn  bits. The description length iB  given jB  is as follows. 

)]1([log)()|()|( 2 −++== nnamrBBDLBBDL ijji  

Because it is formally defined and has low computational cost, we have adopted the 
measure to calculate the difference between Bayesian networks.  

3.5   Combination of Multiple Bayesian Networks 

Single linkage clustering is used to select representative Bayesian networks from a 
population of the last generation. The number of individuals for the combination is 
automatically determined by the predefined threshold value. Bayesian method takes 
each BN’s significance into accounts by allowing the error possibility of each BN to 
affect the ensemble’s results [13]. 

The number of selected BN’s is K. B= },,,{ 21 KBBB … . B denotes the set of the 

BN’s. Q is the target node. M is the number of states of Q that has Mggg ,,, 21 …  

states. The kth BN produces the probability that Q is in state i using Bayesian infer-
ence, and it is defined as )(kPi . Using training data, )|5.0)(( ii qQkPP =>  is calcu-

lated. Finally, ),,,|( 21 ki BBBqQP …= is represented as follows. 
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4   Experimental Results  

The ASIA network, introduced by Lauritzen and Spiegelhalter [14] to illustrate their 
method of propagation of evidence considers a small piece of fictitious qualitative me
dical knowledge. Fig. 2 presents the structure of the ASIA network. The ASIA  
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 is a small Bayesian network that calculates the probability of a patient having 
tuberculosis, lung cancer or bronchitis respectively based on different factors, for exa
mple whether or not the patient has been to Asia recently. 

There are several techniques for simulating BN’s, and we have used probabilistic 
logic sampling, with which we develop a database of 1000 cases. Population size is 
50 and the maximum generation number is 1000. Crossover rate is 0.5, selection rate 
is 0.8 and mutation rate is 0.01.  

Visit to Asia?

Tuberculousis? Lung cancer?

Smoker?

Bronchitis?

Lung cancer or
Tuberculosis?

Positive X-ray? Dyspnoea?

  

Fig. 2. The network structure for a benchmark problem 

Randomly selected 100 cases from the 1000 cases are used as test data while the 
remaining data are used for training. Because the size of the network is relatively 
small, both of genetic algorithm without speciation and that with speciation can find 
near-optimal solutions. Unlike other classifiers such as neural networks and support 
vector machine, Bayesian network can infer the probability of unobserved target sta-
tes given the observed evidences. It is assumed that “Tuberculousis,” “Lung cancer,” 
“Bronchitis,” and “Lung cancer or Tuberculosis” nodes are unobserved target vari-
ables and the remaining nodes are observed variables. The four nodes are regarded as 
target nodes and represent whether a person gets a disease. Although the data are 
generated from the original ASIA network, inference results for the data using the 
original network may be incorrect because there are only four observed variables.  

Using single linkage clustering method, the last generation of speciated evolution 
is clustered and there are five clusters when threshold value is 90. If the number of 
individuals in the cluster is more than two, the one with the highest fitness is chosen. 
An individual labeled as 49 in the largest cluster shows the best fitness (-2123.92) 
while the others’ fitness are ranged from -2445.52 to -2259.57. Although the fitness 
values of four individuals in other clusters are relatively smaller than the best one, the 
combination can be stronger one by complementing each other. Inference accuracies 
of original network, the best individual from simple genetic algorithm without speci-
ation (Fig. 3), and the combination of the speciated Bayesian networks (Fig. 4) for the 
“Lung cancer or Tuberculosis” node are 98%, 98%, and 99%, respectively. For “Tu-
berculousis,” “Lung cancer,” and “Bronchitis” nodes, they show the same accuracy. 
Both of the best individual in simple genetic algorithm and the individual labeled as 
49 in the speciation have a similar structure with the original network. However, the 
other four networks in the speciation have more complex structures than the original 
network. Table 1 summarizes the inference results of the case where only the combi-
nation of BN’s produces correct result. 

 network
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Reversed 

Added
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Fig. 3. The best individual evolved using simple genetic algorithm without speciation 

Predictive accuracy is the most popular technique for evaluating models, whether 
they are Bayesian networks, classification trees, or regression models [15]. However, 
a fundamental problem lies in that predictive accuracy entirely disregards the confi-
dence of the prediction. For example, a prediction of the target variable with a prob-
ability of 0.51 counts exactly the same as a prediction with a probability of 1.0. In 
recognition of this kind of problem, there is a growing movement to employ cost-
sensitive classification methods. Good invented a cost neutral assessment measure 
[16]. Good’s definition is  

∑ =+=
i

i vxPIR )](log1[ 2  

where i  indexes the test cases, v  is the actual class of the ith test case and )( ixP  is th
e probability of that event asserted by the learner.  
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(a) Label=17 (Fitness=-2385.91)              (b) Label=29 (Fitness=-2445.52) 
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 (c) Label=39 (Fitness=-2259.57)            (d) Label=46 (Fitness=-2359.82) 
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Smoker?

Bronchitis?

Lung cancer or
Tuberculosis?

Positive X-ray? Dyspnoea?  
(e) Label=49 (Fitness=-2123.92) 

Fig. 4. The five individuals evolved using genetic algorithm with speciation 
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Table 1. Inference results of “Lung cancer or Tuberculosis” when “Visit to Asia” is “No visit,” 
“Smoker” is “Non-Smoker,” “Positive X-ray” is “Abnormal” and “Dyspnoea” is “Present.” The 
original value of “Lung cancer or Tuberculosis” is “True.” (T=True, F=False) 
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nal netwo

rk 

The best individ
ual in simple G

A 

Label
 17 

Label 
29 

Label 
39 

Label 
46 

Label 
49 

The combinatio
n of five BN’s 

 False False False True True True False True 
P(T) 0.494 0.471 0.118 0.709 0.676 0.576 0.464 0.503 
P(F) 0.506 0.529 0.882 0.291 0.324 0.424 0.536 0.497 

Table 2. Information rewards for inferring “Bronchitis” when “Dyspnoea” is unobservable. 
Experimental results are the average of ten runs 

The original network 
The best individual 

in simple GA 
The best individual i

n speciation 
The combination of BN’s 

-2.08 -3.14 ± 0.18 -3.02 ± 0.22 0.86 ± 0.24 

 
(a) Genetic algorithm                            (b) Speciated evolution 

Fig. 5. The comparison of dendrograms 

The combination of the speciated BN’s can improve the predictability even when 
some variables are unobserved. Table 2 summarizes information reward values for the 
situation and the combination of BN’s shows the best performance. If the reward 
value is high, it means that the classifier performs well. Although the best individual 
in the speciated evolution returns similar reward value with that from the best indi-
vidual in genetic algorithm, the combination returns improved information reward 
value that is larger than that of original network. Fig. 5 shows the comparison of den-
drogram. In Fig. 5(a), 40 individuals in the left side form one cluster and they are 
almost the same. Meanwhile, 40 individuals in the left side in Fig. 5(b) form a number 
of clusters.  

5   Conclusion 

In this paper, we have proposed an ensemble of multiple speciated Bayesian net-
works using Bayesian combination method. Although some Bayesian networks in 
ensemble provides incorrect inference, the ensemble network can perform correctly 
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by reflecting each Bayesian network’s behavior in training data and reducing the 
effect of incorrect results. Experimental results on ASIA network show that the 
proposed method can improve simple genetic algorithm which converges to only 
one solutions (sometimes the best solution performs poorly in changed environ-
ments) and the fusion of results from speciated networks can improve the inference 
performance by compensating each other. Future work of this research is to develop 
real-world applications based on the proposed method. Highly dynamic problems 
such as robot navigation, user context recognition, and user modeling can be consi-
dered as candidates. 
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