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Abstract. The resource-constrained project scheduling problem (RCP-
SP) is one of the most challenging problems in project scheduling. During
the last couple of years many heuristic procedures have been developed
for this problem, but still these procedures often fail in finding near-
optimal solutions for more challenging problem instances. In this paper,
we present a new genetic algorithm (GA) that, in contrast of a conven-
tional GA, makes use of two separate populations. This bi-population
genetic algorithm (BPGA) operates on both a population of left-justified
schedules and a population of right-justified schedules in order to fully
exploit the features of the iterative forward/backward scheduling tech-
nique. Comparative computational results reveal that this procedure can
be considered as today’s best performing RCPSP heuristic.

1 Introduction

We study the resource-constrained project scheduling problem (RCPSP), de-
noted as m,1|cpm|Cmax using the classification scheme of [9]. The RCPSP can
be stated as follows. In a project network in AoN format G(N ,A), we have a set
of nodes N and a set of pairs A, representing the direct precedence relations.
The set N contains n activities, numbered from 0 to n − 1 (|N | = n). Further-
more, we have a set of resources R, and for each resource type k ∈ R, there is
a constant availability ak throughout the project horizon. Each activity i ∈ N
has a deterministic duration di ∈ IN and requires rik ∈ IN units of resource type
k. We assume that rik ≤ ak for i ∈ N and k ∈ R. The dummy start and end
activities 0 and n - 1 have zero duration and zero resource usage. A schedule S
is defined by an n-vector of start times s(S) = (s0, . . . , sn−1), which implies an
n-vector of finish times f (S) where fi = si +di, ∀ i ∈ N . A schedule S is said to
be feasible if it is nonpreemptive and if the precedence and resource constraints
are satisfied. If none of the activities can be scheduled forwards (backwards) due
to precedence or resource constraints, then the schedule is said to be left-justified
(right-justified). The objective of the RCPSP is to find a feasible schedule that
minimizes the project makespan fn−1.
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2 Representation and Generation of Left- and
Right-Justified Schedules

Each RCPSP meta-heuristic relies on a schedule representation to encode a
schedule and a schedule generation scheme (SGS) to decode the schedule rep-
resentation into a schedule S. For both the representation and generation of a
schedule various approaches exist.

Table 1. Incorporation of TO condition

Although five different methods are given in the literature [13], a schedule
representation is simply a representation of a priority-structure between the ac-
tivities. For our procedure we use the most frequently used [13] activity list (AL)
representation where a sequence of non-dummy activities λ = [λ1, . . . , λn−2] is
used to determine the priority of each activity. When λp = i, we say that activity
i is at position p in the AL. An activity i has a lower priority than all preceding
activities in the sequence and a higher priority than all succeeding activities. An
AL is said to be precedence-feasible if an activity never comes after the position
of one of its successors (predecessors) in the list used for the generation of a
left-justified (right-justified) schedule. In the current paper, we rely on the topo-
logical ordering (TO) condition [5, 28] for our AL representation. Our version
of the TO condition and its implementation in the AL is described in Table 1,
with p and q the positions of activity i and j in an AL. The table illustrates
that the TO condition and the implementation depends on the justification of
the schedule (left or right). Since the TO condition is based on start and finish
times, and hence uses information from the corresponding schedule, we can only
incorporate the TO condition after the schedule generation. In Sect. 3.3, the
advantages of the TO condition will be illustrated on a project example.

Besides various schedule representations, there exist also two different types
of SGSs in the literature; the serial SGS and the parallel SGS. As it is sometimes
impossible to reach an optimal solution with the parallel SGS [17], we opt for the
serial SGS where all activities are scheduled one-in-a-time and in the sequence
of the AL. Each activity is scheduled as soon (as late) as possible within the
precedence and resource constraints to construct a left-justified (right-justified)
schedule. We introduce the example project depicted in Fig. 1, with a single
renewable resource type with availability a1 = 2. The problem is represented by
an activity-on-the-node network. Corresponding to each activity we depicted the
duration on top of the node and the resource demand below the node. Figure 2
represents a left-justified schedule 1, obtained by applying a serial SGS on the
activity list [1, 2, 8, 5, 3, 4, 6, 7, 9]. The incorporation of the TO-condition on
this schedule, leads to the activity list AL1, depicted at the bottom of Fig. 2.
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Fig. 1. Example project

Fig. 2. A left-justified schedule and the corresponding AL after incorporation of the

TO-condition

A well-known local search technique for RCPSP meta-heuristics is the iter-
ative forward/backward scheduling technique. This technique is introduced by
Li and Willis [20] and successfully implemented in various meta-heuristic pro-
cedures [1, 5, 11, 24, 25, 26, 27, 29]. The technique is based on the serial SGS and
uses schedule information to determine the AL. Starting from a left-justified
schedule, the procedure creates an AL by sorting the activities in decreasing or-
der of their finish times (i.e. the TO condition for left-justified schedules of Table
1). Then, the serial SGS is used to build a right-justified schedule. In a following
iteration, the activities are sorted in increasing order of the start times in the
right-justified schedule (i.e. the TO condition for right-justified schedules of Ta-
ble 1) and the serial SGS is used to generate a left-justified schedule. In doing so,
only improvements can occur for each iteration. The procedure stops when no
further improvements can be obtained. Assume that schedule 1 of Fig. 2 is our
start left-justified schedule with an activity list AL1 in which the activities are
sorted in decreasing order of the finish times. The iterative forward/backward
procedure uses this list to construct a right-justified schedule with corresponding
activity list AL2. In this list, the activities have been sorted in increasing order
of their start times. This iteration (see schedule 2 of Fig. 3) leads to a makespan
improvement of 2 time units. In a next iteration, the procedure constructs the
left-justified schedule 3 with a corresponding activity list AL3. The procedure
could continue this process by using the activity list AL3 to construct a right-
justified schedule, but it is easy to see that no further makespan improvement
can be achieved.
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Fig. 3. The iterative forward/backward scheduling technique

3 The Bi-population Genetic Algorithm

The evolution of living beings motivated Holland [10] to solve complex opti-
mization problems by using algorithms that simulate biological evolution. This
approach gave rise to the technique known as a genetic algorithm (GA). In a
GA, processes loosely based on natural selection, crossover and mutation are
repeatedly applied to one population that represents potential solutions. In con-
trast to a regular GA, we use the bi-population genetic algorithm (BPGA) that
makes use of two different populations: a population LJS that only contains
left-justified schedules and a population RJS that only contains right-justified
schedules. Both populations have the same population size. The procedure starts
with the generation of an initial LJS , followed by an iterative process that con-
tinues until the stop criterion is satisfied. The iterative process consecutively
adapts the population elements of RJS and LJS . RJS (LJS) is updated by
feeding it with combinations of population elements taken from LJS (RJS)
that are scheduled backwards (forwards) with the serial SGS. The remainder
of this section reveals some further algorithmic details about the construction
of the initial population, parent-selection, crossover-operator, diversification and
selection mechanism of the BPGA.

3.1 Construction of the Initial Population

We start the genetic algorithm by building an initial population LJS of left-
justified schedules. Each population element is created by randomly generating
an AL, constructing the corresponding left-justified schedule and finally incor-
porating the TO condition of Table 1.

3.2 Parent Selection

For each population element a of LJS (RJS) we create a set of nrc right-
justified (left-justified) children that are candidates to enter RJS (LJS). To
create a child out of a, we select another parent b from LJS (RJS) by using the
2-tournament selection procedure. In this selection procedure two population-
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elements are chosen randomly, and the element with the lowest makespan is
selected. Afterwards, we determine randomly whether a or b represents the father
Sf . The other parent represents the mother Sm.

3.3 Generation of a Child

A right-justified (left-justified) child is created from two parents from LJS
(RJS) in two phases. In both phases, the advantages of our TO-condition im-
plementation are fully exploited.

Fig. 4. Crossover operator

Phase 1: The Construction of a Combined Activity List ALScomb
. Based

on two parents from LJS (RJS), we use a 2-point crossover operator to generate
the combined activity list ALScomb

which is used in phase 2 to construct a right-
justified (left-justified) child Sc. To that purpose we select two crossover points
cp1 and cp2 as follows. First, we randomly generate a crossover interval ∆cp
from [1/4.fn−1(Sm), 3/4.fn−1(Sm)], where fn−1(Sm) denotes the makespan of
the mother schedule. Then, we randomly generate cp1 from [0, fn−1(Sm)−∆cp]
and set cp2 = cp1 + ∆cp. The TO condition allows the construction of ALScomb

and the combined schedule Scomb by simply copying parts from the AL of the
mother and the father. More precisely, we copy all activity positions from the
mother from the intervals [1, cp1[ and ]cp2, n]. The remaining activities from the
interval [cp1, cp2] are copied in ALScomb

according to the AL ranking of the father.
In Fig. 4, we have set cp1 and cp2 to 4 and 7, and ALSf

and ALSm
represent the

activity lists of the parents in TO-format. The dark-colored activities from the
interval [1, 4[ (i.e. 9, 7 and 6) and ]7, 9] (i.e. 1 and 3) are copied from ALSm

to
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ALScomb
and correspond to part 1 and part 3 in Scomb. The remaining activities

(i.e. 2, 5, 8 and 4), displayed in white, are copied into ALScomb
according to the

sequence of ALSf
, i.e. 8, 4, 2 and 5 and represent part 2 in Scomb.

Phase 2: The Construction of a Right-Justified (Left-Justified) Child.
The combined schedule Scomb is often neither a left- or a right-justified sched-
ule. Therefore, we transform this combined schedule into a left-justified (right-
justified) schedule, when the parents belong to RJS (LJS), using the SGS. This
can be done by running the iterative forward/backward scheduling procedure on
the combined schedule Scomb. In doing so, only improvements can occur for each
part of Scomb. In our example of Fig. 4, we transform Scomb in a right-justified
schedule Sc, resulting in a makespan improvement of 3 time-units for part 1 and
1 time-unit for part 2.

3.4 Diversification

Diversification is necessary in every genetic algorithm to avoid the creation of
a homogeneous population. We use a reactive method that only applies diver-
sification to a child when it comes from two not mutually diverse parents. To
define whether the parents are sufficiently diverse, we need a threshold τ and a
distance measure. Our distance measure simply takes the sum of absolute devi-
ations between the positions in the activity list of the father and the activity list
of the mother for each activity and divides the obtained value by the number of
non-dummy activities as defined in (1). Diversification is desirable if the distance
exceeds the threshold τ and is exerted on ALScomb

by randomly swapping the
positions of two activities for nrd times. In our example we calculate a distance
of 2.0 between Sf and Sm as the sum of position differences for all activities is
18 and the number of non-dummy activities is 9.

dist(Sf , Sm) =
1

n − 2

n−2∑

i=1

|position of i in ALSf
− position of i in ALSm

| (1)

3.5 Selection Mechanism

The selection mechanism determines the way in which the new generation re-
places the old generation. In order to make the genetic algorithm successful,
the ’survival of the fittest’-principle should be embedded. Good children should
have a higher chance to enter the new generation than inferior ones in order
to improve the quality of the population. The population RJS (LJS) is fed
by children generated from LJS (RJS). In the following we will explain how
we update RJS . The way in which we update LJS is analogue. As mentioned
previously, we generate nrc children for each element of LJS . From the set that
is created by the xth population-element, we select the child with the lowest
makespan. This child will replace the xth element of RJS , even if this leads to a
deterioration of the makespan. But, in order to prevent that we loose high-quality
schedules, we do not automatically replace the xth element if this corresponds
with the best-found schedule so far. In this case, we only perform replacement
when the child represents a new best-found solution.
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4 Comparative Computational Results

We have coded the procedure in Visual C++ 6.0 and performed computational
tests on an Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using
the well-known PSPLIB dataset [15] which we use to compare our procedure
with other existing procedures from the literature. This dataset contains the
subdatasets J30, J60 and J120 that contain problem-instances of 30, 60 and 120
activities respectively. We predefined the settings of the parameters as follows.
The number of children nrc is fixed at 2, the diversification-parameter nrd is
fixed at the number of non-dummy activities divided by 10 and the threshold
τ for applying diversification is set equal to 2. The population size has been
fine-tuned to an optimal value.

Table 2. Comparative results for J30, J60 and J120

To be able to compare procedures for the RCPSP, Hartmann and Kolisch [8]
presented a methodology in which all procedures can be tested on the PSPLIB-
datasets by using 1,000 and 5,000 generated schedules as a stop condition. In [14]
Hartmann and Kolisch give an update of the results, and also report on 50,000
schedules as a schedule limit. In Table 2 we compare our algorithm with these
results for the datasets J30, J60 and J120 respectively. The average deviation
from the optimal solution is used as a measure of quality for J30 and the av-
erage deviation from the critical path based lower bound for J60 and J120. For
each dataset the heuristics are ranked by the corresponding deviation for 50,000
schedules. The results for 5,000 and 1,000 schedules are used as a tie-breaker, if
necessary. The table reveals that our procedure is capable to report consistently
good results. For the datasets J60 and J120 it outperforms all other procedures.
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Table 3. Optimal values of the population size

Only for J30, [11] and [5] report a slightly better result. Furthermore, our pro-
cedure often generates better solutions for the PSPLIB problem instances than
the best solutions found so far (based on PSPLIB results on December 3, 2004,
see http://www.bwl.uni-kiel.de/bwlinstitute/Prod/psplib/datasm.html). As an
example, we obtained 15 improvements for J120 and with a stop condition of
50,000 schedules. In general we conclude that the more challenging the problem-
instances are, the better our procedure performs compared to other procedures.

The optimal values of the population size used for the results of Table 2
and the average CPU-time needed to solve one problem-instance of the dataset
are depicted in Table 3. This table reveals that the population size is positively
related to the schedule limit and negatively related to the number of activities.
The use of a large population avoids, similar to diversification, a homogeneous
population, and this becomes more important for small problem instances and
high values for the stop criterion.

5 Conclusion

In this paper we presented a genetic algorithm for the resource-constrained
project scheduling problem (RCPSP) that operates on two separate popula-
tions. The first population only contains left-justified schedules and the second
population only contains right-justified schedules. Our bi-population genetic al-
gorithm (BPGA) combines schedules of the first population to create children
that are candidate to enter the second population and vice versa. In this way
the procedure is able to exploit the advantages of a local search technique de-
noted as the iterative forward/backward scheduling technique. The comparative
computational results on the well-known PSPLIB dataset illustrated that the
BPGA is currently the best meta-heuristic procedure for the RCPSP.
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