
A Kernel-Level RTP for Efficient Support of
Multimedia Service on Embedded Systems

Dong Guk Sun and Sung Jo Kim

Chung-Ang University, 221 HukSuk-Dong,
DongJak-Ku, Seoul, Korea, 156-756

{dgsun, sjkim}@konan.cse.cau.ac.kr

Abstract. Since the RTP is suitable for real-time data transmission in
multimedia services like VoD, AoD, and VoIP, it has been adopted as
a real-time transport protocol by RTSP, H.323, and SIP. Even though
the RTP protocol stack for embedded systems has been in great need for
efficient support of multimedia services, such a stack has not been devel-
oped yet. In this paper, we explain embeddedRTP which supports the
RTP protocol stack at the kernel level so that it is suitable for embedded
systems. Since embeddedRTP is designed to reside in the UDP module,
existing applications which rely on TCP/IP services can be processed
the same as before, while applications which rely on the RTP protocol
stack can request RTP services through embeddedRTP ’s API. Our per-
formance test shows that packet-processing speed of embeddedRTP is
about 7.8 times faster than that of UCL RTP for multimedia streaming
services on PDA in spite that its object code size is reduced about by
58% with respect to UCL RTP’s.

1 Introduction

Multimedia services on embedded systems can be classified into on-demand mul-
timedia services like VoD and AoD, and Internet telephone service like video
conference system and VoIP. H.323[1], SIP[2] and RTSP[3] are representative
protocols that support these services. In fact, these protocols utilize RTP[4] for
multimedia data transmission. Therefore, embedded systems must support RTP
in order to provide multimedia services.

Most recent researches related to RTP have focused on implementation
of RTP library for their own application. Typical implementations include
RADVISION company’s RTP/RTCP protocol stack toolkit[5], Bell Lab’s
RTPlib[6], common multimedia library[7] of UCL(University College Lon-
don) and vovida.org’s VOCAL(the Vovida Open Communication Application
Library)[8]. These libraries can be used along with traditional operating sys-
tems such as LINUX or UNIX. Among these implementations, RADVISION
Company’s RTP/RTCP toolkit[5] is a general library that can be used in an em-
bedded system as well as a large-scale server system. This RTP/RTCP toolkit,
however, is not suitable for embedded system; this is because it did not consider

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 79–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



80 D.G. Sun and S.J. Kim

typical characteristics of embedded system such as memory shortage. No RTP
for embedded systems has been developed so far.

In this paper, we design and implement RTP at the kernel level(called as
embeddedRTP) to support smooth multimedia service in embedded systems.
The primary goals of embeddedRTP are to guarantee the small code size, fast
packet-processing and high resource utilization. Furthermore, embeddedRTP
can resolve resource-wasting problem caused by RTP that was implemented
redundantly by applications.

This paper is organized as follow. In Section 2, we discuss current RTP’s
problems and propose a solution to them. Then, Section 3 explains design and
implementation of embeddedRTP . Section 4 presents performance evaluation of
embeddedRTP and finally Section 5 concludes our work and discusses future
work.

2 Current RTP’s Problem

Because RTP is not a mandatory protocol to use Internet, network modules of
embedded system do not necessarily include RTP. Therefore, each application
requiring RTP in an embedded system should contain its own RTP as shown in
Fig.1. In this case, if embedded system must support various kinds of multimedia
services such as H.323[1], SIP[2] and RTSP[3], these applications must implement
RTP redundantly. Therefore, this method is inappropriate to embedded systems,
which do not have sufficient amount of memory.

IPNetwork Layer

Application

RTP

Application

RTP

Application

RTP
……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

UDP

IPNetwork Layer

Application

RTP

Application

RTP

Application

RTP

Application

RTP

Application

RTP

Application

RTP
……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

UDP

Fig. 1. Protocol stack in case that RTP is included in each application

RTP can be also offered as a library for application layer as shown in Fig.2.
This method can resolve RTP’s redundancy problem. However, when data is
transmitted from UDP to RTP and subsequently from RTP to an application,
overhead due to memory copy and context switching may occur. Since vari-
ous applications must share one library, library compatibility problem may also
occur.

If we implement RTP at the kernel level as shown in Fig.3, the protocol
redundancy and context switching problems can be resolved. Moreover, we can
reduce the code size of applications. To check if a received packet is in fact a
RTP packet, port numbers of all UDP packets should be examined. This checking



A Kernel-Level RTP for Efficient Support of Multimedia Service 81

IPNetwork Layer

Application ……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

ApplicationApplication

UDP

RTP

IPNetwork Layer

Application ……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

ApplicationApplication

UDP

RTP

Fig. 2. Protocol stack in case that RTP is supported by library

may cause overhead to other application layer protocols that use UDP. However,
such application layer protocols as TFTP, DHCP and ECHO are not used in
multimedia communication and do not cause much traffics. Moreover, these do
not require high performance. Consequently, we can expect that overhead caused
by RTP checking does not have serious effect on performance of these application
layer protocols.

IPNetwork Layer

Application

UDP

……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

Application

embeddedRTP

Kernel level

User level

IPNetwork Layer

Application

UDP

……

Transport Layer

Application Layer

Network Interface Card
Physical & 

Data Link Layer

Application

embeddedRTP

Kernel level

User level

Fig. 3. Protocol stack in case that embeddedRTP is implemented at the kernel level

3 Design and Implementation of embeddedRTP

3.1 Overall Structure

For efficient memory usage, fast packet processing and removal of redundancy
problem, embeddedRTP is designed to reside in the UDP module as shown in
Fig.3. Fig.4 shows overall structure of embeddedRTP .

EmbeddedRTP is composed of API, session checking module, RTP packet-
reception module, RTP packet-processing module, RTCP packet-reception mod-
ule, RTCP packet-transmission module and RTCP packet-processing module.
When an application uses TCP or UDP, BSD socket layer can be utilized as be-
fore. On the other hand, applications requiring RTP can utilize embeddedRTP ’s
API for RTP services.

3.2 Communication Mechanism

Since RTP is implemented at the kernel level in embeddedRTP , communica-
tion channel between RTP module of application layer and UDP module of the



82 D.G. Sun and S.J. Kim

embeddedRTP API

embeddedRTP System Call Handler

UDP

RTP Packet

Receiving

RTCP Packet

Receiving

RTCP Packet

Sending

RTP Packet

Processing

RTCP Packet

Processing

Application

System CallApplication Layer

embeddedRTP

Session

confirmation

……

Statistics

Per Session

Packet Buffer

per Session

…

Session Data Structure

Event Queue

Signal Signal

embeddedRTP API

embeddedRTP System Call Handler

UDP

RTP Packet

Receiving

RTCP Packet

Receiving

RTCP Packet

Sending

RTP Packet

Processing

RTCP Packet

Processing

Application

System CallApplication Layer

embeddedRTP

Session

confirmation

……

Statistics

Per Session

Packet Buffer

per Session

…

Session Data Structure

Event Queue

……

Statistics

Per Session

Packet Buffer

per Session

…

Session Data Structure

Event Queue

Signal Signal

Fig. 4. Overall Structure of embeddedRTP

kernel should be changed to communication channel between embeddedRTP
and UDP module of the kernel. For communication between application and
embeddedRTP , special mechanisms supported by OS should be provided.

Application Calls EmbeddedRTP : In this case, we use system call as a
communication channel. System call is the one and only method by which appli-
cation can use kernel modules in LINUX system. However, the current LINUX
kernel does not include RTP-related system calls. Therefore, we register new
system calls at the kernel so that application can call embeddedRTP .

EmbeddedRTP Calls Applications: In this case, we use signal and event
queue as a communication channel. Signal is a message transmission mechanism
that is used generally in LINUX, but has following problems. First, since we
can only use predefined signals, the signal mechanism cannot be used in data
transmission. Second, since the types of signals that can be transmitted are
not diverse, this mechanism’s usage should be restricted. Finally, there is no
mechanism to store signals. Therefore, if another signal arrives before the current
signal is handled, the current one will be overridden. Nonetheless, it is enough
for notifying the occurrences of events. The signal overriding problem can be
resolved by event queue. When an event occurs, it is stored in the event queue
and a signal is sent to an application to notify occurrence of an event. Event
queue used in embeddedRTP manages FIFO(First-In First-Out) queue which is
the simplest form of queue. And each queue entry stores the multimedia session
ID and event arisen.



A Kernel-Level RTP for Efficient Support of Multimedia Service 83

3.3 Session Management

Session management is important in embeddedRTP because it should be used
by all applications which need RTP services. When RTP is implemented at ap-
plication layer, it is enough for applications themselves to manage their session.
However, in embeddedRTP , all multimedia sessions must be managed by the
kernel.

As shown in Fig.5, multimedia session is managed by one-dimensional array
combined with circular queue. Each element of the array contains session in-
formation, which includes transmission related data such as the server address
and port number, event queue and packet buffer related data structures, and
statistical information. In this mechanism, each session can be identified by the
index of array; so session information can be accessed quickly. Moreover, front
and rear pointers can prevent the queue from overflowing. However, since there
is trade-off between the number of multimedia session and memory usage, it is
difficult to decide the proper queue size.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.
……

rearfront

SessionArr[]

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.

Multimedia

Session Info.
……

rearfront

SessionArr[]

Fig. 5. Data Structure for Session Management

3.4 Session Checking Module

When an RTP packet is received, UDP module does all processing related to
UDP packets such as checksum. After that, UDP module stores the packet in
socket buffer. At this time, this module checks whether there is a multime-
dia session associated with the received packet. If a multimedia session exists,
RTP/RTCP packet-reception module is called according to the packet type.

3.5 RTP Packet-Reception Module

RTP packet-reception module reads in a packet from socket buffer and sets
packet header structure. After that, it checks the version field and length of
packets to examine that packets are valid. If valid packets are received, it calls
RTP packet-processing module. Received RTP packet is managed by rtp packet
structure. This structure consists of rtp packet data structure that composes
packet buffer and rtp packet header that stores header information.

3.6 RTP Packet-Processing Module

RTP packet-processing module inserts a packet into packet buffer, and updates
statistical information. After that, this module informs application that the RTP
packet be received.



84 D.G. Sun and S.J. Kim

……

Bitmap

Packet buffer chunk

……

1 Unit

packet 1 packet 2 packet 3 packet 5 packet 4

searching point

……

Bitmap

Packet buffer chunk

……

1 Unit

packet 1 packet 2 packet 3 packet 5 packet 4

searching point

Fig. 6. Packet Buffer

Packet Buffer: Packet buffer stores received RTP packets. As shown in Fig.6,
packet buffer is consisted of packet buffer chunk and bitmap. The former consists
of units with fixed size, while the latter is a bit-stream that shows whether each
unit of packet buffer chunk is available or not.

When a RTP packet is received, RTP packet-processing module checks if it
can be stored contiguously from a unit in packet buffer chunk corresponding to
searching point1 of bitmap. If so, it is stored in packet buffer chunk; otherwise,
searching starts from the next available searching point repeatedly until enough
units can be found. Once it has been stored in packet buffer chunk, bitmap
corresponding to the allocated units are set.

This mechanism utilizes memory more efficiently as the size of unit becomes
smaller. On the other hand, as it becomes smaller, the size of bitmap becomes
larger, resulting in longer searching time for bitmap. Since there is trade-off be-
tween memory efficiency and searching time, the unit size should be determined
appropriately according to the resources of target systems and the characteristics
of applications.

Packet Ordering: Since RTP uses UDP as a transmission protocol, RTP can-
not guarantee that packets are received sequentially(See Fig.6). Therefore, in
order to guarantee timeliness of multimedia data, embeddedRTP must maintain
the order of packets that a server transmits. We use circular queue using doubly
linked list to maintain the order of packets. Each node of circular queue stores
information on a packet stored in packet buffer chunk. Head and tail pointers of
circular queue indicate the first and last packet in the ordered list, respectively.

Each received packet will not be inserted into packet buffer from the unit
which is adjacent to the unit pointed by tail pointer, unconditionally. Instead,
it is inserted in a suitable place of the queue according to its sequence number.
If the sequence number is the same as a stored packet, it is dropped because it

1 The location of bitmap corresponding to a unit of packet buffer chunk from which
to search for enough unit(s) to store a packet.



A Kernel-Level RTP for Efficient Support of Multimedia Service 85

is duplicated one. Consequently, the application can access packets sequentially
from the head pointer.

3.7 RTCP

RTCP packet-reception module acts similar to RTP packet-reception module.
It reads in a packet from socket buffer and checks the validity of packet. After
that, it calls RTCP packet-processing module.

RTCP packet-processing module checks if received packets are in a multime-
dia session using the SSRC(Synchronization Source) field of RTCP header. If so,
it calls relevant processing routine according to the RTCP message type. After
RTCP messages are processed, it stores reception event into event queue and
sends a signal to the application to inform that RTCP message be received.

When an RTCP packet needs to be transmitted, RTCP packet-transmission
module creates and transmits the packet with calculated statistical informa-
tion. This packet includes various RTCP messages such as RR(Receiver Re-
port), SDES(Source Description) and BYE. Upon transmitting the packet, it
resets statistical information and terminates its execution.

4 Performance Evaluations

To evaluate performance of embeddedRTP , we measure the packet-processing
time, memory requirement, the code size, and session checking overhead. We
then compare them with those of UCL RTP library, which has been used in
MPEG4IP project[9].

4.1 Packet-Processing Time

Packet-processing time is one of the most important factors to evaluate the per-
formance of protocol stack. Packet-processing time is defined as time between
the moment when RTP packets are confirmed in multimedia session and the mo-
ment when the application consumes all the packets, after RTP packet-processing
has been done in UDP module. While tens of RTP packets are transmitted per
second, RTCP packets are transmitted about every 5 seconds. Therefore, we
excluded RTCP packet-processing time in our measurement. Table 1 shows the
measured packet-processing time.

Table 1. RTP Packet-Processing Time(ms/packet)

EmbeddedRTP UCL RTP

Packet-Processing Time 0.289 2.253

As shown in Table 1, embeddedRTP is about 7.8 times faster than UCL RTP
library. The biggest cause of this difference is that embeddedRTP uses stati-
cally allocated memory, while UCL RTP library allocates packet storage data



86 D.G. Sun and S.J. Kim

structure dynamically. Another cause is the time when packet is stored. While
embeddedRTP stores packets at the kernel level, UCL RTP library stores packets
at the application layer. Therefore, UCL RTP library can be preempted to other
process by kernel scheduler while received RTP packets are being processed.
On the other hand, embeddedRTP is not preempted because RTP packets are
processed in the LINUX kernel.

4.2 Memory Requirement

To compare the memory requirement, four sample animations which have dif-
ferent bit and frame rates are used in measurement. We measure the average
payload size of sample animation, the average number of packets being buffered
and the number of units that are used in embeddedRTP . Since the average
payload size of animations used in the measurement tends to be multiple of a
roughly 200 bytes, we adopt 200 bytes as the size of unit. The media buffering
time when to start animation playback greatly affect the amount of memory to
be used. While buffering time is about 5 - 10 seconds for playing sample anima-
tions, in general, we allow only 2 seconds as buffering time to reduce memory
requirement without affecting animation playback.

Table 2. Memory requirement of UCL RTP and embeddedRTP

Sample
Payload
(bytes)

Buffered
Packets

Units
Memory Requirement(bytes) Bit

Rates
Frame
RatesUCL RTP EmbeddedRTP

1 798 27 4.683 40,087 25,031 125 15

2 849 57 4.935 85,580 56,315 277 30

3 389 87 2.778 131,180 47,469 101 30

4 280 58 2.099 86,594 24,231 68 30

As shown in Table 2, embeddedRTP ’s memory requirement is about 28% -
65% than UCL RTP’s. Also, the amount of memory required by sample anima-
tions varies according to their characteristics. Sample 2 and 4 have the similar
number of buffered packets, but their payload sizes differ as much as 570 bytes.
Since UCL RTP library uses the equal sized data structure regardless of the pay-
load size, memory requirement are similar. On the other hand, in embeddedRTP ,
sample 2 and 4 require about 65% and about 28% of memory required by UCL
RTP library, respectively.

The payload size of sample 1 is greater than that of sample 4, while the av-
erage number of sample 1’s buffered packets is much less than sample 4’s. Con-
sidering these two samples, embeddedRTP ’s memory requirements are similar
in both samples. However, in UCL RTP library, memory requirements increase
proportionally by the average number of buffered packets since the library allo-
cates pre-determined amount of memory per packet. Since sample 3 has smaller
payload size comparing with other samples, but has more average number of
buffered packets, sample 3 shows the largest difference in memory requirement
between embeddedRTP and UCL RTP.



A Kernel-Level RTP for Efficient Support of Multimedia Service 87

4.3 Code Size

Because embedded systems have much smaller physical memory than desktop
PC or server system, the code sizes of software is very important in embedded
systems. Table 3 shows the code size of embeddedRTP and that of UCL RTP
library. The former is determined by the total size of embeddedRTP modules
that are implemented at the kernel level and embeddedRTP ’s API. The latter
is determined only by modules relevant to packet reception. As shown in Table
3, embeddedRTP ’s code size is reduced to 42% of UCL RTP’s.

Table 3. Code Size(bytes)

EmbeddedRTP
UCL RTP Library

EmbeddedRTP Modules EmbeddedRTP ’s API
25,080 804

61,132
25,884

4.4 Session Checking Overhead

In embeddedRTP , all packets received by network system should be checked
whether they are in fact RTP packets. Therefore, we measure session checking
overhead for RTP packets which are not in a multimedia session and other UDP
packets which are not a RTP or RTCP packet. In the worst case, it takes 0.014
ms per packet. This time is relatively short comparing with packet-processing
time of embeddedRTP (0.289 ms). Note that such application protocols that
use UDP but are not be used in multimedia services as TFTP or DHCP, neither
generate much traffics nor require high performance. Consequently, the overhead
caused by session checking does not have serious effects on performance of these
application layer protocols.

5 Conclusions and Future Work

In this paper, we explained embeddedRTP which supports the RTP protocol
stack at the kernel level so that it is suitable for embedded systems. Since
embeddedRTP is designed to reside in the UDP module, existing applications
which rely on TCP/IP services can be processed the same as before, while appli-
cations which rely on the RTP protocol stack can request RTP services through
embeddedRTP ’s API. EmbeddedRTP stores received RTP packets into per ses-
sion packet buffer, using the packet’s port number and multimedia session infor-
mation. Communications between applications and embeddedRTP is performed
through system calls and signal mechanisms. Additionally, embeddedRTP ’s API
makes it possible to develop applications more conveniently. Our performance
test shows that packet-processing speed of embeddedRTP is about 7.8 times
faster than that of UCL RTP for multimedia streaming services on PDA in spite
that its object code size is reduced about by 58% with respect to UCL RTP’s.



88 D.G. Sun and S.J. Kim

To improve the result of this paper, the followings should be investigated fur-
ther. Static packet buffer used in emdbeddedRTP can reduce packet-processing
time but restricts the extensibility. In order to overcome this shortcoming, ex-
tensible packet buffer using overflow buffer has to be implemented. In addition,
research on how to determine the size of unit dynamically is needed to obtain op-
timal performance. Furthermore, we need to investigate a mechanism to reduce
the number of memory copies between protocols stack and the applications.

References

1. ITU-T Recommendation H.323: Packet based multimedia communications systems.
Feb. (1998).

2. J.Rosenberg, et al. : SIP: Session Initiation Protocol , RFC 3261, Jun. (2002).
3. H.Schulzrinne, et al.: Real Time Streaming Protocol (RTSP)., RFC 2326, Apr.

(1998).
4. H.Schulzrinne, et al.: RTP: A Transport Protocol for Real-Time Applications. , RFC

1889, Jan. (1996).
5. RADVISION : RTP/RTCP Toolkit.,

http://www.radvision.com/TBU/Products/RTP-RTCP+Toolkit/default.htm.
6. Lucent Labs : Lucent Technologies Software distribution. ,

http://www.bell-labs.com/topic/swdist.
7. University College London, ”UCL Common Multimedia Library”,

http://www-mice.cs.ucl.ac.uk/multimedia/software/common/index.html.
8. VOVIDA.org : Vovida.org.,

http: // www.vovida.org/protocols/downloads/rtp .
9. MPEG4IP : MPEG4IP - Open Streaming Video and Audio.,

http://www.mpeg4ip.net


	Introduction
	Current RTP’s Problem
	Design and Implementation of embeddedRTP
	Overall Structure
	Communication Mechanism
	Session Management
	Session Checking Module
	RTP Packet-Reception Module
	RTP Packet-Processing Module
	RTCP

	Performance Evaluations
	Packet-Processing Time
	Memory Requirement
	Code Size
	Session Checking Overhead

	Conclusions and Future Work
	References



