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Abstract. Electronic transaction becomes common practice in real world busi-
ness. This paper focuses on the issue of dependability in critical transactions 
like electronic payment, electronic contract signing. Recent fair protocols can 
recover transactions from network crashes, but cannot survive local system 
crashes. A two-party dependable transaction protocol is proposed. During the 
protocol, both parties can recover the transaction from network and local 
system failures in a transparent way, which means that after the recovery, 
outcome messages would be just the same as those from a successful run of the 
transaction. 

1   Introduction 

Electronic transaction becomes common practice in real world business. When the 
transaction between organizations is executed on network, they may face risks of 
broken fairness in case of network failures, local systems failures [3], cheating behav-
ior of either involved organization, and so on. So it is very important for them to fol-
low some kind of transaction protocol assuring dependability. Dependability assures 
fairness for involved parties and recoverability from failures. Fairness means that 
when the electronic transaction terminates, either both parties get their expected 
items, or neither does. A Trusted Third Party (TTP) is involved as Pagnia and Garner 
[6] have proved that no definite fairness can be achieved without a TTP. 

We first set up the application scenario for our transaction protocol: company B 
(the client, denoted as Bob) is going to buy some electronic goods from company A 
(the merchant, denoted as Alice) and they have settled on the goods and the price. 
Now they need to finish the exchange of Bob’s check with Alice’s goods. Bob’s 
check is composed of his bank-certified account information, goods information and 
can be validated only after signed by his signature. With that signed check, Alice can 
get her money paid from Bob’s bank. 

1.1   Related Work 

1.1.1   Fair Protocol Capable of Recovery from Network Crashes 
In 1996, Asokan et al. [1] introduces the idea of optimistic approach and presents fair 
protocols with offline TTP, in which TTP intervenes only when an error occurs (net-
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work error or malicious party’s cheating). But the recovered messages are different from 
those produced by the sender or the recipient, which make the protocols suffer from bad 
publicity and weak fairness, as the recovered messages may lose some functionalities of 
the original ones. Invisible TTP is first introduced by Micali [5] to solve this problem. 
The TTP can generate exactly the same evidences as the sender or the recipient. In this 
way, judging the outcome evidences and received items cannot decide whether the TTP 
has been involved, so that the recovery is done in a transparent way. 

Using convertible signatures (CS) is the recently focused approach to realize 
transparent recovery. It means to firstly send a partial committed signature that can be 
converted into a full signature (that is a normal signature) by both the TTP and the 
signer. Recently, Park et al. [7] present a very efficient protocol in which the output 
evidences are standard RSA signatures and the partial signature is non-interactively 
verifiable. But very soon, Dodis and Reyzin [2] break the scheme by proving the TTP 
can obtain Alice’s entire secret key with only her registration information. In the same 
paper, they propose a new CS scheme (DR signature scheme) to produce an equally 
efficient but more secure protocol. 

But all these protocols have not considered cases of systems crashes and assumed 
that local systems of Alice, Bob and TTP are all stable. 

1.1.2    Recovery Methods for Local Systems Crashes 
Liu et al. [3] have proposed the Semantics-based Message Logging (SbML method) to 
enable recovery of local systems crashes. The SbML is a logging method balanced 
between pessimistic logging (log all messages before sending out) and optimistic 
logging (message processing and logging is separated). Involved parties can define 
their critical points (called point-of-no-return) in the protocol run and message will be 
logged before they enter the defined points.  

This logging method works in protocols with online TTP. But when it comes to 
offline TTP and invisible TTP, fairness after crashes can be potentially broken. Cases 
of broken fairness are as following:  

Case 1.1: after Alice sends out the first message, her system crashes; when Bob get 
the message, he can invoke the recover sub-protocol to get the final expected mes-
sages; if Alice fails to recover her system before TTP’s recovered messages arrive, 
her fairness will be broken. So simply using their logging method is not enough to 
guarantee fairness. 

Case 1.2: the offline TTP has not logged the variables: recovered and aborted, if TTP 
crashes after a successful abort operation requested by Alice; at this time, Alice has 
quitted the transaction since her request has been confirmed; but if Bob submit a re-
cover request after TTP recovers, TTP will recover the transaction and send proper 
recovered messages to Alice and Bob; in this case, the message cannot arrive Alice, 
so fairness for Alice is broken.  

1.2   Our Work 

In this paper we first define the property of Dependability of transaction protocol. 
Then we present a transaction protocol based on DR signature scheme. To enable 
transparent recovery of crashes of network and local systems, we adapt the Seman-
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tics-based Message Logging method and introduce a new inquiry sub-protocol. Fi-
nally we prove that the transaction protocol is dependable.  

The remainder of the paper is structured as follows. In Section 2, we define the de-
pendability property of electronic transactions. Section 3 presents the transaction 
protocol in payment scenario. Section 4 analyzes the protocol in details. Some con-
cluding remarks are given in Section 5. 

2   Dependability of Electronic Transactions 

Markowitch et al.[4] study many former fairness definitions and present a well-
knitted definition. Recently, Wang and Guo [20] present a set of new requirements for 
fair protocols with invisible TTP. Based on that, we extract 5 properties of transaction 
protocols and we say a protocol is dependable if it satisfies all these properties. 

Definition 1. Effectiveness 
A transaction protocol is effective if there exists a successful exchange of both parties’ 
expected items. 

Definition 2. Fairness 
A transaction protocol is fair if when the protocol run ends, either both parties get 
their expected items or neither of them gets anything useful. 

Definition 3. Timeliness  
A transaction protocol is timely if the protocol can be completed in a finite amount of 
time while preserving fairness for both exchangers. 

Definition 4. Non-repudiability 
A transaction protocol is non-repudiable if when the exchange succeeds, either payer 
or payee cannot deny (partially or totally) his/her participation. 

Definition 5. Transparent recoverability 
A transaction protocol is transparent recoverable if after a successful exchange, the 
result evidences of origin/receipt and exchanged items are indistinguishable in respect 
to whether TTP has been involved. 

With all these properties’ definitions, we can define the dependability as following: 

Definition 6. Dependability 
A transaction protocol is dependable if it assures effectiveness, fairness, timeliness, 
non-repudiability and transparent recoverability. 

3   A Dependable Payment Protocol with Transparent Recovery 

In this section, we present a dependable protocol in the payment scenario described in 
Section 1. The protocol uses the DR signature as an important cryptographic tool. So 
we first briefly describe this signature scheme. Then with assumptions clearly pre-
sented, all the five parts of the protocol is described in details. 
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3.1   Dodis-Reyzin Convertible Signature Scheme 

The DR signature is based on a recent widely-used RSA-like signature scheme called 
gap Diffie-Hellman (GDH) signature and the corresponding GDH groups (see [2] 
section 4 for detailed description). 

GDH Signature. Assume G is a multiplicative group of prime order p. Key genera-
tion algorithm of the GDH signature scheme picks a GDH group of order p, and ran-
dom ,

p
g G x Z∈ ∈ . It computes x

h g= , and set the public key to be (g, h) (G, p is 
public accessible), and the secret key to be x. To sign a message m, one com-
putes ( )

x
H mσ = , where H(m) is a random oracle. To verify σ , one out-

puts ( , , ( ), )
DDH

V g h H m σ , that is, test if ( )log logg H mh σ=  (outputting 1 means being 
equal). One can easily find that a secure zero-knowledge proof can accomplish this 
test. 

DR Signature. This CS signature scheme contains one register procedure and several 
signing/verifying algorithms.  

Register Procedure. Signer (say Alice) chooses random 1, , pg G x x Z∈ ∈ , computes 
1

2 1 1mod , , xxx x x p h g h g= − = = , and sets her public key ( , )pk g h= , secret key 

1( , )sk x x= , partial public key 1ppk h= , partial secret key 2psk x= , then she sends 
the ,,pk ppk psk to the TTP, the TTP will check whether 2

1

xh h g= so that it can 
finish the signature conversion. 

Signing/Verifying Algorithms of Full Signature. They are just the signing/verifying 
algorithms of normal GDH signature: ( ) ( )

x
FS m H mσ= = , 

( , ) ( , , ( ), )
DDH

Ver m V g h H mσ σ= . 

Signing/Verifying Algorithms of Partial Signature. Similar with former ones but using 
the public key h1: 1( ) ' ( )

x
PS m H mσ= = , 

1
( , ') ( , , ( ), ')

DDH
PVer m V g h H mσ σ= . 

Converting Algorithm. The TTP run this algorithm ( , ')Convert m σ to convert PS(m) 
to FS(m): it will first check whether ( , ') 1PVer m σ = , if holds, it outputs 

2( ) ' ( )
x

FS m H mσ= . 

Dodis and Reyzin have proved the DR signature scheme is just as secure as the 
normal GDH signature scheme ([2] Theorem 3). 

3.2   The Protocol 

Based on the application scenario set in Section 1, we first state our protocol’s as-
sumptions as following: 

Communication Network. We assume the communication channel between Alice 
and Bob is unreliable and channels between exchangers (Alice/Bob) and TTP are 
resilient. Messages in a resilient channel can be delayed but will eventually arrive. On 
the contrary, messages in unreliable network may be lost. 

Cryptographic Tools. Encryption tools including symmetric encryption, asymmetric 
encryption and normal signature is secure. In addition, the adopted signature scheme 
is message recovery. 
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Honest TTP. The TTP should send a valid and honest reply to every request. Honest 
means that when the TTP is involved, if a recover decision is made, Alice gets the 
payment and Bob gets the goods; if a abort decision is made, Alice and Bob get the 
abort confirmation and they cannot recover the exchange in any future time. 

Local Systems. Local systems of Alice, Bob and TTP are recoverable with proper 
message logging including logging before point-of-no-return [3]. 

To describe the protocol, we need to use several notations concerning the neces-
sary cryptographic tools: 

! Ek()/Dk(): a symmetric-key encryption/decryption function under key k  
! EX()/DX(): a public-key encryption/decryption function under pkX 
! SX(): ordinary signature function of X 
! k: the key used to cipher goods 
! pkX/skX: public/secret key of X 
! cipher = Ek(goods): the cipher of goods under k 
! X→Y: transmission from entity X to Y  
! h(): a collision resistant one-way hash function 
! goods: goods destined to B 
! check: the check destined for A, it contains transaction identity, goods identity, 

price information, B’s account information, etc 
! l: a label that uniquely identifies a protocol run 
! f: a flag indicating the purpose of a message 

Registration Sub-protocol. To participate in a payment protocol, both Alice and Bob 
need to run the register procedure with the TTP as required by DR signature. Note 
that it will not affect the security if they share a same g. Bob also need to send his 
check for the TTP to verify its validity. 

Main Protocol. After Alice and Bob settle the price and the goods, they can follow 
the main protocol. Note that they both make their own messages logged on stable 
storage before run the protocol: 

Step 1, Alice sends encrypted goods (cipher) with the key k encrypted by the TTP’s 

public key (ETTP(k)), her partial signature on them (a=cipher, ETTP(k), PSA(a)= '
A

σ ) to 

initiate the payment process. 
Step 2, if Bob decides to give up or he doesn’t receive Alice’s message in time, he can 
simply quit and retain fairness. When he receives the message, he will first run 

( , ')
A

PVer a σ , if it equals 1, he will send his check and his partial signature on it 
(PSB(check)= '

B
σ ) to Alice. Otherwise, he quits the protocol. 

Step 3, if Alice decides to give up or she doesn’t receive Bob’s message in time, she 
can invoke the abort sub-protocol to prevent a later resolution by the TTP. When she 
receive the message, she will first run ( , ')

B
PVer check σ , if it equals 1, she will log the 

message and the state information, then send k and her full signature on a (FSA(a)= 

A
σ ) to Bob. Otherwise, she also invokes the abort sub-protocol. 
Step 4, if Bob detects that his channel with Alice is broken or doesn’t receive the 
message in time, he can invoke the recover sub-protocol. When he receive the mes-
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sage, he will check whether k can decrypt the cipher and the goods is satisfactory, 
also he will run ( , )

A
Ver a σ , if all these checking pass, he will log the message and the 

state information, then send his check and his full signature on it (FSA(check)= 
B

σ ) to 
Alice. Otherwise, he will invoke the recover sub-protocol. 
Step 5, if Alice detects that her channel with Bob is broken or doesn’t receive the 
message in time, she can invoke the recover sub-protocol. When she receives the 
message, she will run ( , )

B
Ver check σ , if it equals 1, she will accept the check. Other-

wise, she will invoke the recover sub-protocol. 
_____________________________________________________ 
Main Protocol__________________________________________ 
A:  log(B, l, a, cipher, k) 
B:  log(A, l, check) 

A→B: fEOO, B, l, h(k), cipher, ETTP(l, k), PSA(a) 
B:  if not ( , ( ))

A
Ver a PS a then stop 

   else log(A, l, h(k), cipher, ETTP(l, k), PSA(a)) 
B→A： fEOR, A, l, PSB(b) 
A:  if times out then abort 

elseif not ( , ( ))
B

Ver b PS b  then abort 
else log(B, l, PSB(b)) 

A→B： fNRO, B, l, k, FSA(a) 
B:  if times out then call recover[X:=B,Y:=A] 

        else log(A, l, k, FSA(a)) 
B→A： fNRR, A, l, FSB(b) 
A:  if A times out then call recover[X:=A,Y:=B]________________ 

Recover Sub-protocol. Whenever necessary, Alice/Bob (noted by X) will invoke the 
recover protocol to let the TTP decide whether finish or abort the payment process. 

Step 1, X sends to the TTP ETTP(k), PSA(a)= '
A

σ , check, PSB(check)= '
B

σ  to initiate a 
recover process. Because of the resilient channel between X and the TTP, this mes-
sage will eventually arrives the TTP. 
Step 2, when the TTP receive the message, it will first check whether the protocol has 
already been recovered or aborted, if so, it will stop because it is sure that both parties 
have got the recovered items or the abort confirmation. Then it will decrypt ETTP(k) 
with its secret key skTTP, if succeeds, it will run ( , ')

A
PVer a σ and ( , ')

B
PVer check σ . If 

both equals 1, the TTP will run ( , ')
A

Convert a σ  and ( , ')
B

Convert check σ . After all 
these operations succeed, TTP will log the message and the variable recovered, then 
send the FSA(check)= 

B
σ  to Alice and FSA(a)= 

A
σ & k to Bob. If either checking fails, 

it will abort the protocol and send confirmations to Alice and Bob. 
_____________________________________________________________ 
Recover Sub-protocol____________________________________________ 
X→TTP: fRecX, Y, l, h(cipher), h(k), ETTP(k), PSA(a), PSB(b) 

TTP:  log(fRecX, A, B, l, h(cipher), h(k), ETTP(k), PSA(a), PSB(b)) 
if h(k)≠h(DTTP(ETTP(k))) or aborted or recovered then stop 

else if PVer(a, PSA(a))≠1 or PVer(a, PSA(a))≠1 then stop 
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else recovered=true 

2
( ( ), )

A A
Convert PS a x  and 

2
( ( ), )

B B
Convert PS b x  

log(A, B, l, recovered, FSA(a), k, FSB(b)) 
TTP→A: fNRR, A, l, FSA(a) 
TTP→B: fNRO, B, l, k, FSB(b)______________________________________ 
 

Inquiry Sub-protocol. After recovering from local system crashes, Alice/Bob (de-
noted as X) can invoke the inquiry sub-protocol to check the current status of the 
transaction and get what s/he deserves. 

Step 1, X sends an inquiry request to the TTP. Because of the resilient channel be-
tween X and the TTP, this message will eventually arrives the TTP. 
Step 2, on the inquiry request, TTP will check the current status of the protocol ac-
cording to the label l. If no record is available, that means that protocol has not been 
submitted to TTP and X can directly recover the protocol run with Y. So TTP will just 
need to return a null message to X. If the protocol has been recovered, TTP will send 
the recovered message to X, that is, FSA(a), k (for Bob) or FSA(check) (for Alice). If 
the protocol has been aborted, TTP will send the abort confirmation to X. 

_____________________________________________________________ 
Inquiry Sub-protocol____________________________________________ 
X→TTP: fInqX, InqX 
TTP:  if aborted then  

TTP→X: fCona, A, B, l, Cona 
TTP:  elseif recovered then  

               if X=A then 
TTP→A: fNRR, A, l, FSA(a)  

else 
TTP→B: fNRO, B, l, k, FSB(b) 
   else 
TTP→X:  null_________________________________________________ 
 

Abort Sub-protocol. In step 2 of the main protocol, Alice can invoke this sub-
protocol to make the TTP abort this payment protocol run. 

Step 1, Alice sends an abort request to the TTP. Because of the resilient channel be-
tween X and the TTP, this message will eventually arrives the TTP. 
Step 2, if the protocol has not been recovered or aborted, the TTP will abort the proto-
col and log the message and the variable aborted, then send confirmations (Cona) to 
both parties. 

_____________________________________________________________ 
Abort Sub-protocol_____________________________________________ 
X→TTP: fAbort, l, B, abort 
TTP:  if aborted or recovered then stop 

else aborted=true 
                  log(A, B, l, aborted) 
TTP→A: fCona, A, B, l, Cona 
TTP→B: fCona, A, B, l, Cona_______________________________________ 
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4   Analysis of the Protocol 

Following is the analysis with respect to the dependability definition in Section 2. 

Claim 1. Assuming the channel between Alice and Bob is unreliable and adopted 
cryptographic tools are secure, the protocol satisfies the effectiveness requirement. 

Proof: When both Alice and Bob are honest, thus they will follow the protocol to 
send messages. If the probability of successful transmission in the unreliable channel 
is δ , then the probability of successful execution of one main protocol run will 
roughly be 4δ . Even it’s small, but it means successful execution without TTP’s in-
volvement is still possible. Thus the protocol satisfies the effectiveness requirement. 

Claim 2. Assuming the channels between the TTP and Alice/Bob are resilient, 
adopted cryptographic tools are secure and the TTP is honest, the protocol satisfies 
the fairness requirement. 

Proof: The fairness can be proved considering 3 aspects: fairness for Alice, fairness 
for Bob and recovered fairness after TTP crashes.  

! Fairness for Alice Assuming Alice is honest, then risks she may faces include: 

1) She did not receive any message or the message is invalid in step 3. She can re-
quest abort to prevent that Bob may call a recovery later. If Bob’s recovery re-
quest arrives to the TTP before her abort request, the TTP still will send the re-
covered goods and evidence to her. Thus will not affect her benefit. 

2) She did not receive any message or the message is invalid in step 5. She can 
submit a recovery request, because the TTP is honest, the exchange will be 
forced to complete. If Bob sent a recovery request during this period, the result 
will be the same; if Bob sent an abort request which arrived before Alice’s re-
covery request, the exchange will be aborted by the TTP, and no party can gain 
advantage. 

3) Local system crashes. After Alice recovers from local system crash, she can in-
stantly invoke inquiry sub-protocol to check the current status; if she has submit-
ted abort or recover request before her crash, she will get proper messages (abort 
confirmation or recovered messages) from TTP; if Bob has submitted recover 
request before or during her crash, she will get recovered messages from TTP; if 
no involvement before or during her crash, she can simply contact Bob to con-
tinue the transaction. So her fairness is assured. 

! Fairness for Bob Assuming Bob is honest, then risks he may faces include: 

1) He did not receive any message or the message is invalid in step 2. He can sim-
ply stop without any risk. And at this time, Alice cannot call recovery. 

2) He did not receive any message or the message is invalid in step 4. He can re-
quest recovery and the exchange will be forced to complete. If Alice request re-
covery at the same time, the result will be the same. 

3) Local system crashes. After Bob recovers from local system crash, he can in-
stantly invoke inquiry sub-protocol to check the current status; if he has submit-
ted recover request before his crash, he will get recovered messages from TTP; 
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if Alice has submitted abort or recover request before or during his crash, he will 
get proper messages (abort confirmation or recovered messages) from TTP; if no 
involvement before or during his crash, he can simply contact Alice to continue 
the transaction. So his fairness is assured. 

! Recovered fairness after TTP crashes Cases of TTP crashes include: 

1) Alice has submitted abort request before TTP crashes, and TTP has sent both 
parties the abort confirmation. Because TTP has logged request message and the 
variable aborted, so after TTP recovers the information about this protocol run, 
the TTP will deny any later recovery request by either Alice or Bob. 

2) Alice/Bob has submitted recover request before TTP crashes, and TTP has sent 
both parties the recovered messages. Because TTP has logged the request mes-
sage and the variable recovered, so after TTP recovers the information about this 
protocol run, the TTP can re-run the recovery operations (if necessary) and will 
ignore Alice’s later abort request. 

3) Alice/Bob has submitted abort/recover request during TTP crashes. Alice/Bob 
can re-submit request after TTP’s recovery or TTP can actively broadcast the 
crashes information so that all requesting parties can re-submit their requests. 

Claim 3. Assuming the channels between the TTP and Alice/Bob are resilient, 
adopted cryptographic tools are secure and the TTP is honest, the protocol satisfies 
timeliness requirement.  

Proof: Alice can conclude the protocol in one of the two ways: 

1) requesting abort before sending the message of step 3. 
2) requesting recovery in any other time. 

Bob can conclude the protocol in one of the three ways: 

1) stopping at any time before sending the message of step 2. 
2) requesting recovery in any other time. 

With the channel assumption, the abort confirmation or the recovered information 
will arrive to both parties in a finite amount of time. And all these conclusions, as 
discussed in the proof of claim 2, will not hurt either party’s interests. So the timeli-
ness is guaranteed. 

Claim 4. Assuming the channels between the TTP and Alice/Bob are resilient, 
adopted cryptographic tools are secure, the TTP is honest, the protocol satisfies non-
repudiation requirement. 

Proof: When the exchange succeeds, either by following the main protocol or recov-
ered by the TTP (including recovered message after inquiry), Alice will get 
FSA(check)= 

B
σ , and Bob will get FSA(a)= 

A
σ & k. So Alice can convince outside 

parties that Bob has received goods and claim her money from Bob’s bank. Similarly, 
Bob can prove that Alice has sent goods. 

Claim 5. Assuming the channels between the TTP and Alice/Bob are resilient, 
adopted cryptographic tools are secure, the TTP is honest, the protocol guarantees 
transparent recoverability. 
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Proof: Either the TTP is involved or not, the resulting message (FSB(check), FSA(a) 
and k) are just the same, so the protocol is transparent recoverable. 

With all these claims, we can easily see that the protocol is dependable: 

Theorem 1. Assuming the channels between the TTP and Alice/Bob are resilient, 
adopted cryptographic tools are secure and the TTP is honest, the protocol is de-
pendable. 

5   Conclusions 

In this paper, we produce a dependable transaction protocol with transparent recover-
ability. We have shown that the protocol are practical as it has high recoverability and 
can survive relatively unreliable network. To be more precisely about effect of every 
factor in the protocol like network/system reliability, honesty of both parties and etc, 
we are building an agent-based platform for analysis and verification. Then we can 
see how dependable protocol can be applied in different environments. 
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