

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 691 – 700, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dependable Transaction for Electronic Commerce

Hao Wang1, Heqing Guo1, Manshan Lin1, Jianfei Yin1, Qi He2, and Jun Zhang2

1 School of Computer Science & Engineering, South China University of Technology,
Guangzhou, China 510640

 guozhou@scut.edu.cn
{iswanghao, lmshill, yjhhome}@hotmail.com

2 Computer Engineering School, Nanyang Technological University, Singapore 639798
{qihe0001, jzhang}@ntu.edu.sg

Abstract. Electronic transaction becomes common practice in real world busi-
ness. This paper focuses on the issue of dependability in critical transactions
like electronic payment, electronic contract signing. Recent fair protocols can
recover transactions from network crashes, but cannot survive local system
crashes. A two-party dependable transaction protocol is proposed. During the
protocol, both parties can recover the transaction from network and local
system failures in a transparent way, which means that after the recovery,
outcome messages would be just the same as those from a successful run of the
transaction.

1 Introduction

Electronic transaction becomes common practice in real world business. When the
transaction between organizations is executed on network, they may face risks of
broken fairness in case of network failures, local systems failures [3], cheating behav-
ior of either involved organization, and so on. So it is very important for them to fol-
low some kind of transaction protocol assuring dependability. Dependability assures
fairness for involved parties and recoverability from failures. Fairness means that
when the electronic transaction terminates, either both parties get their expected
items, or neither does. A Trusted Third Party (TTP) is involved as Pagnia and Garner
[6] have proved that no definite fairness can be achieved without a TTP.

We first set up the application scenario for our transaction protocol: company B
(the client, denoted as Bob) is going to buy some electronic goods from company A
(the merchant, denoted as Alice) and they have settled on the goods and the price.
Now they need to finish the exchange of Bob’s check with Alice’s goods. Bob’s
check is composed of his bank-certified account information, goods information and
can be validated only after signed by his signature. With that signed check, Alice can
get her money paid from Bob’s bank.

1.1 Related Work

1.1.1 Fair Protocol Capable of Recovery from Network Crashes
In 1996, Asokan et al. [1] introduces the idea of optimistic approach and presents fair
protocols with offline TTP, in which TTP intervenes only when an error occurs (net-

692 H. Wang et al.

work error or malicious party’s cheating). But the recovered messages are different from
those produced by the sender or the recipient, which make the protocols suffer from bad
publicity and weak fairness, as the recovered messages may lose some functionalities of
the original ones. Invisible TTP is first introduced by Micali [5] to solve this problem.
The TTP can generate exactly the same evidences as the sender or the recipient. In this
way, judging the outcome evidences and received items cannot decide whether the TTP
has been involved, so that the recovery is done in a transparent way.

Using convertible signatures (CS) is the recently focused approach to realize
transparent recovery. It means to firstly send a partial committed signature that can be
converted into a full signature (that is a normal signature) by both the TTP and the
signer. Recently, Park et al. [7] present a very efficient protocol in which the output
evidences are standard RSA signatures and the partial signature is non-interactively
verifiable. But very soon, Dodis and Reyzin [2] break the scheme by proving the TTP
can obtain Alice’s entire secret key with only her registration information. In the same
paper, they propose a new CS scheme (DR signature scheme) to produce an equally
efficient but more secure protocol.

But all these protocols have not considered cases of systems crashes and assumed
that local systems of Alice, Bob and TTP are all stable.

1.1.2 Recovery Methods for Local Systems Crashes
Liu et al. [3] have proposed the Semantics-based Message Logging (SbML method) to
enable recovery of local systems crashes. The SbML is a logging method balanced
between pessimistic logging (log all messages before sending out) and optimistic
logging (message processing and logging is separated). Involved parties can define
their critical points (called point-of-no-return) in the protocol run and message will be
logged before they enter the defined points.

This logging method works in protocols with online TTP. But when it comes to
offline TTP and invisible TTP, fairness after crashes can be potentially broken. Cases
of broken fairness are as following:

Case 1.1: after Alice sends out the first message, her system crashes; when Bob get
the message, he can invoke the recover sub-protocol to get the final expected mes-
sages; if Alice fails to recover her system before TTP’s recovered messages arrive,
her fairness will be broken. So simply using their logging method is not enough to
guarantee fairness.

Case 1.2: the offline TTP has not logged the variables: recovered and aborted, if TTP
crashes after a successful abort operation requested by Alice; at this time, Alice has
quitted the transaction since her request has been confirmed; but if Bob submit a re-
cover request after TTP recovers, TTP will recover the transaction and send proper
recovered messages to Alice and Bob; in this case, the message cannot arrive Alice,
so fairness for Alice is broken.

1.2 Our Work

In this paper we first define the property of Dependability of transaction protocol.
Then we present a transaction protocol based on DR signature scheme. To enable
transparent recovery of crashes of network and local systems, we adapt the Seman-

 Dependable Transaction for Electronic Commerce 693

tics-based Message Logging method and introduce a new inquiry sub-protocol. Fi-
nally we prove that the transaction protocol is dependable.

The remainder of the paper is structured as follows. In Section 2, we define the de-
pendability property of electronic transactions. Section 3 presents the transaction
protocol in payment scenario. Section 4 analyzes the protocol in details. Some con-
cluding remarks are given in Section 5.

2 Dependability of Electronic Transactions

Markowitch et al.[4] study many former fairness definitions and present a well-
knitted definition. Recently, Wang and Guo [20] present a set of new requirements for
fair protocols with invisible TTP. Based on that, we extract 5 properties of transaction
protocols and we say a protocol is dependable if it satisfies all these properties.

Definition 1. Effectiveness
A transaction protocol is effective if there exists a successful exchange of both parties’
expected items.

Definition 2. Fairness
A transaction protocol is fair if when the protocol run ends, either both parties get
their expected items or neither of them gets anything useful.

Definition 3. Timeliness
A transaction protocol is timely if the protocol can be completed in a finite amount of
time while preserving fairness for both exchangers.

Definition 4. Non-repudiability
A transaction protocol is non-repudiable if when the exchange succeeds, either payer
or payee cannot deny (partially or totally) his/her participation.

Definition 5. Transparent recoverability
A transaction protocol is transparent recoverable if after a successful exchange, the
result evidences of origin/receipt and exchanged items are indistinguishable in respect
to whether TTP has been involved.

With all these properties’ definitions, we can define the dependability as following:

Definition 6. Dependability
A transaction protocol is dependable if it assures effectiveness, fairness, timeliness,
non-repudiability and transparent recoverability.

3 A Dependable Payment Protocol with Transparent Recovery

In this section, we present a dependable protocol in the payment scenario described in
Section 1. The protocol uses the DR signature as an important cryptographic tool. So
we first briefly describe this signature scheme. Then with assumptions clearly pre-
sented, all the five parts of the protocol is described in details.

694 H. Wang et al.

3.1 Dodis-Reyzin Convertible Signature Scheme

The DR signature is based on a recent widely-used RSA-like signature scheme called
gap Diffie-Hellman (GDH) signature and the corresponding GDH groups (see [2]
section 4 for detailed description).

GDH Signature. Assume G is a multiplicative group of prime order p. Key genera-
tion algorithm of the GDH signature scheme picks a GDH group of order p, and ran-
dom ,

p
g G x Z∈ ∈ . It computes x

h g= , and set the public key to be (g, h) (G, p is
public accessible), and the secret key to be x. To sign a message m, one com-
putes ()

x
H mσ = , where H(m) is a random oracle. To verify σ , one out-

puts (, , (),)
DDH

V g h H m σ , that is, test if ()log logg H mh σ= (outputting 1 means being
equal). One can easily find that a secure zero-knowledge proof can accomplish this
test.

DR Signature. This CS signature scheme contains one register procedure and several
signing/verifying algorithms.

Register Procedure. Signer (say Alice) chooses random 1, , pg G x x Z∈ ∈ , computes
1

2 1 1mod , , xxx x x p h g h g= − = = , and sets her public key (,)pk g h= , secret key

1(,)sk x x= , partial public key 1ppk h= , partial secret key 2psk x= , then she sends
the ,,pk ppk psk to the TTP, the TTP will check whether 2

1

xh h g= so that it can
finish the signature conversion.

Signing/Verifying Algorithms of Full Signature. They are just the signing/verifying
algorithms of normal GDH signature: () ()

x
FS m H mσ= = ,

(,) (, , (),)
DDH

Ver m V g h H mσ σ= .

Signing/Verifying Algorithms of Partial Signature. Similar with former ones but using
the public key h1: 1() ' ()

x
PS m H mσ= = ,

1
(, ') (, , (), ')

DDH
PVer m V g h H mσ σ= .

Converting Algorithm. The TTP run this algorithm (, ')Convert m σ to convert PS(m)
to FS(m): it will first check whether (, ') 1PVer m σ = , if holds, it outputs

2() ' ()
x

FS m H mσ= .

Dodis and Reyzin have proved the DR signature scheme is just as secure as the
normal GDH signature scheme ([2] Theorem 3).

3.2 The Protocol

Based on the application scenario set in Section 1, we first state our protocol’s as-
sumptions as following:

Communication Network. We assume the communication channel between Alice
and Bob is unreliable and channels between exchangers (Alice/Bob) and TTP are
resilient. Messages in a resilient channel can be delayed but will eventually arrive. On
the contrary, messages in unreliable network may be lost.

Cryptographic Tools. Encryption tools including symmetric encryption, asymmetric
encryption and normal signature is secure. In addition, the adopted signature scheme
is message recovery.

 Dependable Transaction for Electronic Commerce 695

Honest TTP. The TTP should send a valid and honest reply to every request. Honest
means that when the TTP is involved, if a recover decision is made, Alice gets the
payment and Bob gets the goods; if a abort decision is made, Alice and Bob get the
abort confirmation and they cannot recover the exchange in any future time.

Local Systems. Local systems of Alice, Bob and TTP are recoverable with proper
message logging including logging before point-of-no-return [3].

To describe the protocol, we need to use several notations concerning the neces-
sary cryptographic tools:

! Ek()/Dk(): a symmetric-key encryption/decryption function under key k
! EX()/DX(): a public-key encryption/decryption function under pkX
! SX(): ordinary signature function of X
! k: the key used to cipher goods
! pkX/skX: public/secret key of X
! cipher = Ek(goods): the cipher of goods under k
! X→Y: transmission from entity X to Y
! h(): a collision resistant one-way hash function
! goods: goods destined to B
! check: the check destined for A, it contains transaction identity, goods identity,

price information, B’s account information, etc
! l: a label that uniquely identifies a protocol run
! f: a flag indicating the purpose of a message

Registration Sub-protocol. To participate in a payment protocol, both Alice and Bob
need to run the register procedure with the TTP as required by DR signature. Note
that it will not affect the security if they share a same g. Bob also need to send his
check for the TTP to verify its validity.

Main Protocol. After Alice and Bob settle the price and the goods, they can follow
the main protocol. Note that they both make their own messages logged on stable
storage before run the protocol:

Step 1, Alice sends encrypted goods (cipher) with the key k encrypted by the TTP’s

public key (ETTP(k)), her partial signature on them (a=cipher, ETTP(k), PSA(a)= '
A

σ) to

initiate the payment process.
Step 2, if Bob decides to give up or he doesn’t receive Alice’s message in time, he can
simply quit and retain fairness. When he receives the message, he will first run

(, ')
A

PVer a σ , if it equals 1, he will send his check and his partial signature on it
(PSB(check)= '

B
σ) to Alice. Otherwise, he quits the protocol.

Step 3, if Alice decides to give up or she doesn’t receive Bob’s message in time, she
can invoke the abort sub-protocol to prevent a later resolution by the TTP. When she
receive the message, she will first run (, ')

B
PVer check σ , if it equals 1, she will log the

message and the state information, then send k and her full signature on a (FSA(a)=

A
σ) to Bob. Otherwise, she also invokes the abort sub-protocol.
Step 4, if Bob detects that his channel with Alice is broken or doesn’t receive the
message in time, he can invoke the recover sub-protocol. When he receive the mes-

696 H. Wang et al.

sage, he will check whether k can decrypt the cipher and the goods is satisfactory,
also he will run (,)

A
Ver a σ , if all these checking pass, he will log the message and the

state information, then send his check and his full signature on it (FSA(check)=
B

σ) to
Alice. Otherwise, he will invoke the recover sub-protocol.
Step 5, if Alice detects that her channel with Bob is broken or doesn’t receive the
message in time, she can invoke the recover sub-protocol. When she receives the
message, she will run (,)

B
Ver check σ , if it equals 1, she will accept the check. Other-

wise, she will invoke the recover sub-protocol.

Main Protocol__
A: log(B, l, a, cipher, k)
B: log(A, l, check)

A→B: fEOO, B, l, h(k), cipher, ETTP(l, k), PSA(a)
B: if not (, ())

A
Ver a PS a then stop

 else log(A, l, h(k), cipher, ETTP(l, k), PSA(a))
B→A： fEOR, A, l, PSB(b)
A: if times out then abort

elseif not (, ())
B

Ver b PS b then abort
else log(B, l, PSB(b))

A→B： fNRO, B, l, k, FSA(a)
B: if times out then call recover[X:=B,Y:=A]

 else log(A, l, k, FSA(a))
B→A： fNRR, A, l, FSB(b)
A: if A times out then call recover[X:=A,Y:=B]________________

Recover Sub-protocol. Whenever necessary, Alice/Bob (noted by X) will invoke the
recover protocol to let the TTP decide whether finish or abort the payment process.

Step 1, X sends to the TTP ETTP(k), PSA(a)= '
A

σ , check, PSB(check)= '
B

σ to initiate a
recover process. Because of the resilient channel between X and the TTP, this mes-
sage will eventually arrives the TTP.
Step 2, when the TTP receive the message, it will first check whether the protocol has
already been recovered or aborted, if so, it will stop because it is sure that both parties
have got the recovered items or the abort confirmation. Then it will decrypt ETTP(k)
with its secret key skTTP, if succeeds, it will run (, ')

A
PVer a σ and (, ')

B
PVer check σ . If

both equals 1, the TTP will run (, ')
A

Convert a σ and (, ')
B

Convert check σ . After all
these operations succeed, TTP will log the message and the variable recovered, then
send the FSA(check)=

B
σ to Alice and FSA(a)=

A
σ & k to Bob. If either checking fails,

it will abort the protocol and send confirmations to Alice and Bob.

Recover Sub-protocol__
X→TTP: fRecX, Y, l, h(cipher), h(k), ETTP(k), PSA(a), PSB(b)

TTP: log(fRecX, A, B, l, h(cipher), h(k), ETTP(k), PSA(a), PSB(b))
if h(k)≠h(DTTP(ETTP(k))) or aborted or recovered then stop

else if PVer(a, PSA(a))≠1 or PVer(a, PSA(a))≠1 then stop

 Dependable Transaction for Electronic Commerce 697

else recovered=true

2
((),)

A A
Convert PS a x and

2
((),)

B B
Convert PS b x

log(A, B, l, recovered, FSA(a), k, FSB(b))
TTP→A: fNRR, A, l, FSA(a)
TTP→B: fNRO, B, l, k, FSB(b)______________________________________

Inquiry Sub-protocol. After recovering from local system crashes, Alice/Bob (de-
noted as X) can invoke the inquiry sub-protocol to check the current status of the
transaction and get what s/he deserves.

Step 1, X sends an inquiry request to the TTP. Because of the resilient channel be-
tween X and the TTP, this message will eventually arrives the TTP.
Step 2, on the inquiry request, TTP will check the current status of the protocol ac-
cording to the label l. If no record is available, that means that protocol has not been
submitted to TTP and X can directly recover the protocol run with Y. So TTP will just
need to return a null message to X. If the protocol has been recovered, TTP will send
the recovered message to X, that is, FSA(a), k (for Bob) or FSA(check) (for Alice). If
the protocol has been aborted, TTP will send the abort confirmation to X.

Inquiry Sub-protocol__
X→TTP: fInqX, InqX
TTP: if aborted then

TTP→X: fCona, A, B, l, Cona
TTP: elseif recovered then

 if X=A then
TTP→A: fNRR, A, l, FSA(a)

else
TTP→B: fNRO, B, l, k, FSB(b)
 else
TTP→X: null___

Abort Sub-protocol. In step 2 of the main protocol, Alice can invoke this sub-
protocol to make the TTP abort this payment protocol run.

Step 1, Alice sends an abort request to the TTP. Because of the resilient channel be-
tween X and the TTP, this message will eventually arrives the TTP.
Step 2, if the protocol has not been recovered or aborted, the TTP will abort the proto-
col and log the message and the variable aborted, then send confirmations (Cona) to
both parties.

Abort Sub-protocol___
X→TTP: fAbort, l, B, abort
TTP: if aborted or recovered then stop

else aborted=true
 log(A, B, l, aborted)
TTP→A: fCona, A, B, l, Cona
TTP→B: fCona, A, B, l, Cona_______________________________________

698 H. Wang et al.

4 Analysis of the Protocol

Following is the analysis with respect to the dependability definition in Section 2.

Claim 1. Assuming the channel between Alice and Bob is unreliable and adopted
cryptographic tools are secure, the protocol satisfies the effectiveness requirement.

Proof: When both Alice and Bob are honest, thus they will follow the protocol to
send messages. If the probability of successful transmission in the unreliable channel
is δ , then the probability of successful execution of one main protocol run will
roughly be 4δ . Even it’s small, but it means successful execution without TTP’s in-
volvement is still possible. Thus the protocol satisfies the effectiveness requirement.

Claim 2. Assuming the channels between the TTP and Alice/Bob are resilient,
adopted cryptographic tools are secure and the TTP is honest, the protocol satisfies
the fairness requirement.

Proof: The fairness can be proved considering 3 aspects: fairness for Alice, fairness
for Bob and recovered fairness after TTP crashes.

! Fairness for Alice Assuming Alice is honest, then risks she may faces include:

1) She did not receive any message or the message is invalid in step 3. She can re-
quest abort to prevent that Bob may call a recovery later. If Bob’s recovery re-
quest arrives to the TTP before her abort request, the TTP still will send the re-
covered goods and evidence to her. Thus will not affect her benefit.

2) She did not receive any message or the message is invalid in step 5. She can
submit a recovery request, because the TTP is honest, the exchange will be
forced to complete. If Bob sent a recovery request during this period, the result
will be the same; if Bob sent an abort request which arrived before Alice’s re-
covery request, the exchange will be aborted by the TTP, and no party can gain
advantage.

3) Local system crashes. After Alice recovers from local system crash, she can in-
stantly invoke inquiry sub-protocol to check the current status; if she has submit-
ted abort or recover request before her crash, she will get proper messages (abort
confirmation or recovered messages) from TTP; if Bob has submitted recover
request before or during her crash, she will get recovered messages from TTP; if
no involvement before or during her crash, she can simply contact Bob to con-
tinue the transaction. So her fairness is assured.

! Fairness for Bob Assuming Bob is honest, then risks he may faces include:

1) He did not receive any message or the message is invalid in step 2. He can sim-
ply stop without any risk. And at this time, Alice cannot call recovery.

2) He did not receive any message or the message is invalid in step 4. He can re-
quest recovery and the exchange will be forced to complete. If Alice request re-
covery at the same time, the result will be the same.

3) Local system crashes. After Bob recovers from local system crash, he can in-
stantly invoke inquiry sub-protocol to check the current status; if he has submit-
ted recover request before his crash, he will get recovered messages from TTP;

 Dependable Transaction for Electronic Commerce 699

if Alice has submitted abort or recover request before or during his crash, he will
get proper messages (abort confirmation or recovered messages) from TTP; if no
involvement before or during his crash, he can simply contact Alice to continue
the transaction. So his fairness is assured.

! Recovered fairness after TTP crashes Cases of TTP crashes include:

1) Alice has submitted abort request before TTP crashes, and TTP has sent both
parties the abort confirmation. Because TTP has logged request message and the
variable aborted, so after TTP recovers the information about this protocol run,
the TTP will deny any later recovery request by either Alice or Bob.

2) Alice/Bob has submitted recover request before TTP crashes, and TTP has sent
both parties the recovered messages. Because TTP has logged the request mes-
sage and the variable recovered, so after TTP recovers the information about this
protocol run, the TTP can re-run the recovery operations (if necessary) and will
ignore Alice’s later abort request.

3) Alice/Bob has submitted abort/recover request during TTP crashes. Alice/Bob
can re-submit request after TTP’s recovery or TTP can actively broadcast the
crashes information so that all requesting parties can re-submit their requests.

Claim 3. Assuming the channels between the TTP and Alice/Bob are resilient,
adopted cryptographic tools are secure and the TTP is honest, the protocol satisfies
timeliness requirement.

Proof: Alice can conclude the protocol in one of the two ways:

1) requesting abort before sending the message of step 3.
2) requesting recovery in any other time.

Bob can conclude the protocol in one of the three ways:

1) stopping at any time before sending the message of step 2.
2) requesting recovery in any other time.

With the channel assumption, the abort confirmation or the recovered information
will arrive to both parties in a finite amount of time. And all these conclusions, as
discussed in the proof of claim 2, will not hurt either party’s interests. So the timeli-
ness is guaranteed.

Claim 4. Assuming the channels between the TTP and Alice/Bob are resilient,
adopted cryptographic tools are secure, the TTP is honest, the protocol satisfies non-
repudiation requirement.

Proof: When the exchange succeeds, either by following the main protocol or recov-
ered by the TTP (including recovered message after inquiry), Alice will get
FSA(check)=

B
σ , and Bob will get FSA(a)=

A
σ & k. So Alice can convince outside

parties that Bob has received goods and claim her money from Bob’s bank. Similarly,
Bob can prove that Alice has sent goods.

Claim 5. Assuming the channels between the TTP and Alice/Bob are resilient,
adopted cryptographic tools are secure, the TTP is honest, the protocol guarantees
transparent recoverability.

700 H. Wang et al.

Proof: Either the TTP is involved or not, the resulting message (FSB(check), FSA(a)
and k) are just the same, so the protocol is transparent recoverable.

With all these claims, we can easily see that the protocol is dependable:

Theorem 1. Assuming the channels between the TTP and Alice/Bob are resilient,
adopted cryptographic tools are secure and the TTP is honest, the protocol is de-
pendable.

5 Conclusions

In this paper, we produce a dependable transaction protocol with transparent recover-
ability. We have shown that the protocol are practical as it has high recoverability and
can survive relatively unreliable network. To be more precisely about effect of every
factor in the protocol like network/system reliability, honesty of both parties and etc,
we are building an agent-based platform for analysis and verification. Then we can
see how dependable protocol can be applied in different environments.

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In Pro-
ceedings of the fourh ACM Conference on Computer and Communications Security, 1997.

2. Y. Dodis, L. Reyzin. Breaking and repairing optimistic fair exchange from PODC 2003. In
Proceedings of the 2003 ACM workshop on Digital rights management, 2003.

3. P. Liu, P. Ning, and S. Jajodia. Avoiding loss of fairness owing to process crashes in fair
data exchange protocols. In Proceedings of the IEEE International Conference on Depend-
able Systems and Networks, Workshop on Dependability despite Malicious Faults, 2000.

4. O. Markowitch, S. Kremer and D. Gollmann. On Fairness in Exchange Protocols. In Pro-
ceedings of Information Security and Cryptology (ICISC 2002). LNCS 2587, Springer-
Verlag, 2002.

5. S. Micali. Certified e-mail with invisible post offices. Available from author: an invited
presentation at the RSA’97 conference, 1997.

6. H. Pagnia and F. C. Gartner. On the impossibility of fair exchange without a trusted third
party. Tech. Rep. TUD-BS-1999-02 (March), Darmstadt University of Technology, 1999.

7. J. M. Park, E. K. P. Chong, H. J. Siegel. Constructing fair-exchange protocols for E-
commerce via distributed computation of RSA signatures. Proceedings of the twenty-
second annual symposium on Principles of distributed computing. 2003.

8. H. Wang and H. Guo. Fair Payment Protocols for E-Commerce. In Proceedings of Fourth
IFIP Conference on e-Commerce, e-Business, and e-Government (I3E’04). Building the E-
Society: E-Commerce, E-Business and E-Government, Kluwer academic publishers, 2004.

	Introduction
	Related Work
	Our Work

	Dependability of Electronic Transactions
	Dependable Payment Protocol with Transparent Recovery
	Dodis-Reyzin Convertible Signature Scheme
	The Protocol

	Analysis of the Protocol
	Conclusions
	References

