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Abstract. In the mathematical theory of distributions are widely used
test-functions (which differ to zero only on a limited interval and have
continuous derivatives of any order on the whole real axis). The use of
such functions is also recommended in Fourier analysis of wavelets. How-
ever, less attention was given to connections between test-functions and
equations used in mathematical physics (as wave equation). This pa-
per shows that test-functions, considered at the macroscopic scale (that
means not as δ -functions) can represent solutions for the wave-equation,
under the form of acausal pulses (which appear under initial null condi-
tions and without any source-term to exist). This implies the necessity for
some supplementary requirements to be added to the wave-equation, so
as the possibility of appearing such pulses to be rejected. It will be shown
that such a possibility represents in fact a kind of bifurcation point, and a
statistic interpretation (based on probability for state-variables to make
certain jumps) is presented for justifying the fact that such pulses are
not observed. Finally the advantage of using practical test function for
wavelets processing is presented.

1 Introduction

As it is known, in Fourier analysis based on wavelets the user wants to obtain
the mean value of the received signal multiplied by certain alternating functions
over a limited time interval. Usually this operation is performed by a direct
integration of the signal on this time interval. However, such structures are
very sensitive at random variations of the integration period, due to stochastic
phenomena appearing when an electric current is interrupted. For this reason,
a multiplication of the received signal with a test-function - a function which
differs to zero only on this time interval and with continuous derivatives of
any order on the whole real axis - is recommended. Yet such test functions,
similar to the Dirac functions, can’t be generated by a differential equation.
The existence of such an equation of evolution, beginning to act at an initial
moment of time, would imply the necessity for a derivative of certain order to
make a jump at this initial moment of time from the zero value to a nonzero
value. But this aspect is in contradiction with the property of test-functions
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to have continuous derivatives of any order on the whole real axis, represented
in this case by the time axis. So it results that an ideal test-function can’t be
generated by a differential equation (see also [1]); the analysis has to be restricted
at possibilities of generating practical test-functions (functions similar to test-
functions, but having a finite number of continuous derivatives on the whole real
axis) useful for wavelets analysis. Due to the exact form of the derivatives of test-
functions, we can’t apply derivative free algorithms [2] or algorithms which can
change in time [3]. Starting from the exact mathematical expressions of a certain
test-function and of its derivatives, we must use specific differential equations
for generating such practical test-functions.

For example, the bump-like function

ϕ(τ) =
{

exp ( 1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise
(1)

is a test-function on [−1, 1]. We are looking for an initial value problem for gen-
erating a practical test-function f on [−1, 1] by considering differential equations
satisfied by the exact form of the amplitude and of the derivatives of the bump
function ϕ. Such equations are

f (1) =
−2τ

(τ2 − 1)2
f, f(−0.99) = ϕ(−0.99) (2)

f (2) =
6τ4 − 2

(τ2 − 1)4
f, f(−0.99) = ϕ(−0.99), f (1)(−0.99) = ϕ(1)(−0.99) (3)

Numerically integrations give solutions similar to ϕ, but having a very small
amplitude.

2 Utility of Test-Functions in Mathematical Physics

Test-functions are known as having as limit the Dirac function when the interval
on which they differ to zero decreases toward zero. However, less attention was
given to the fact that such test-functions, considered at the macroscopic scale
(that means not as Dirac-functions) can represent solutions for certain equa-
tions in mathematical physics (an example being the wave-equation). The main
consequence of this consists in the possibility of certain pulses to appear as solu-
tions of the wave-equation under initial null conditions for the function and for
all its derivatives and without any free-term (a source-term) to exist. In order
to prove the possibility of appearing acausal pulses as solutions of the wave-
equation (not determined by the initial conditions or by some external forces)
we begin by writing the wave-equation

∂2φ

∂x2
− 1

v2

∂2φ

∂t2
= 0 (4)

for a free string defined on the length interval (0, l) (an open set), where φ
represents the amplitude of the string oscillations and v represents the velocity
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of the waves inside the string medium. At the initial moment of time (the zero
moment) the amplitude φ together with all its derivatives of first and second
order are equal to zero. From the mathematical theory of the wave-equation we
know that any solution of this equation must be a superposition of a direct wave
and of a reverse wave. We shall restrict our analyze at direct waves and consider
a supposed extension of the string on the whole Ox axis, φ being defined by the
function

φ(τ) =
{

exp ( 1
(x−vt−1)2−1 ) for x − vt < 1

0 for x − vt ≥ 1
(5)

where t ≥ 0. This function for the extended string satisfies the wave-equation
(being a function of x-vt , a direct wave). It is a continuous function, having
continuous partial derivatives of any order for x ∈ (−∞,∞) and for x ≥ 0. For
x ∈ (0, l) (the real string)the amplitude φ and all its derivatives are equal to
zero at the zero moment of time, as required by the initial null conditions for
the real string. We can notice that for t = 0 the amplitude φ and its partial
derivatives differ to zero only on a finite space interval, this being a property of
the functions defined on a compact set (test functions). But the argument of the
exponential function is x− vt ; this implies that the positive amplitude existing
on the length interval (−2, 0) at the zero moment of time will move along the Ox
axis in the direction x = +∞. So at some time moments t1 < t2 < t3 < t4 < . . .
after the zero moment the amplitude φ will be present inside the string, moving
from one edge to the other. It can be noticed that the pulse passes through the
real string and at a certain time moment tfin (when the pulse existing at the
zero moment of time on the length interval (−2, 0) has moved into the length
interval (l, l + 2)) its action upon the real string ceases. We must point the fact
that the limit points x = 0 and x = l are not considered to belong to the
string; but this is in accordance with the rigorous definition of derivatives (for
this limit points can’t be defined derivatives as related to any direction around
them). The problem that a classical equation (such as the wave-equation) admits
acausal solutions (for initial null conditions and without any external forces to
exist) can be solved using deterministic methods, such as adding supplementary
mathematical requirements to the wave-equation (the principle of least action,
for example) or considering a causal chain:

a) external force (free-term) =⇒
=⇒ b) changes in the value of partial derivatives as related to space coordi-

nates
=⇒ c) changes in the partial derivatives of the amplitude as related to time
=⇒ d) changes in the value of the function

so as the possibility of appearing acausal pulses (not yet observed) to be re-
jected. Such a causal chain can be represented in a mathematical form only as a
differential equation able to generate functions similar to test functions, defined
as practical test functions.

Another kind of method, based on statistical physics, is also available. Taking
into account the fact that at the zero moment of time all derivatives of the
amplitude of the real string are equal to zero on the whole length of the string
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and after a very small time interval, at moment t′ close to zero they may become
different to zero in a small area inside it, we can consider the zero moment of time
as a bifurcation point. At this moment of time there are several branches in the
phase-space which satisfy the wave equation (the zero amplitude and the acausal
pulse, for example). We consider the hypothesis that the string can choose a
branch due to some stochastic jumps of the state-variables (the amplitude and
some of its derivatives) around the zero moment of time, in a certain point.
This implies that small changes in a small number of state-variables at the
zero moment of time, imply a higher probability for that branch of evolution
to appear. In the case we have presented, the acausal pulse (the test function)
possess an infinite number of derivatives different to zero for any value of the
argument for which the function differs to zero. This imply that a jump on
this trajectory requires an infinite number of changes in the state-variables (the
amplitude and its derivatives) at the edge x = 0 of the real string at a time
moment t′ very close to the zero moment. These changes have a very small
module, but they establish in a very short time ∆t the shape of the amplitude φ
on a very small length ∆x around the point x = 0 (the edge of the real string)
along the positive part of the Ox axis (the real string). This nonzero amplitude
appearing on length ∆x can be considered as part of an acausal pulse starting
to move through the real string .By noting these state-variables (the amplitude
and its derivatives of different order at the point x = 0) with a0, a1, . . . ak . . .
and by noting the state-variables of the acausal pulse at a moment of time t′

very close to zero with b0, b1, . . . bk . . .,we may write the probability of appearing
a trajectory representing an acausal pulse as a consequence of such jumps under
the form:

Pac = P0 ∩ P1 ∩ P2 ∩ . . . Pk ∩ . . . (6)

In the previous equation P0 is defined as

P0 = P (a0 (t′) = b0 | a0 (0) = 0) (7)

and it represents the probability of the state-variable a0 to become equal to b0 at
the time moment t′ close to the zero moment, taking into account the fact that
this state-variable was equal to zero at the zero moment of time. P1 is defined
as

P1 = P (a1 (t′) = b1 | a1 (0) = 0) (8)

and it represents the probability of the state-variable a1 to become equal to b1

at the time moment t′ close to the zero moment, taking into account the fact
that this state-variable was equal to zero at the zero moment of time,.. Pk is
defined as

Pk = P (ak (t′) = bk | ak (0) = 0) (9)

and it represents the probability of a state-variable ak to become equal to bk at
the time moment t′ close to the zero moment, taking into account the fact that
this state-variable was equal to zero at the zero moment of time.

Considering possible independent jumps for each state-variable ak and con-
sidering also that each factor Pk appearing in expression of Pac is less than a
certain value m < 1 ( Pk corresponding to a probability) , we may write:
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Pac = P0 ∩ P1 ∩ P2 . . . ∩ Pk . . . ⇒ (10)

Pac = P0 · P1 · P2 . . . · Pk . . . ⇒ (11)

(the probabilities Pk are considered to be independent, so Pac is represented by
the product of all Pk)

Pac < P0 · P1 · P2 . . . · Pn ⇒ (12)

(all factors Pk, with k > n, are less than unity, so the right part of the previous
equality increases if these factors are removed)

Pac < mn ⇒ (13)

(because each factor is considered to be less than m, where m < 1)

Pac → 0 for n → ∞ (14)

(the number of state variables ak trends to infinite, and so n can be chosen as
great as we want).

So Pac → 0, the probability of appearing an acausal pulse being equal to
zero. On the contrary, the probability for the string to keep its initial trajectory
(the zero trajectory, which means that no changes in the amplitude appear) is
very high, while this implies that the initial state-variables do not vary.

Another statistic method of solving this aspect consist in considering that at
each moment the probability of appearing such an acausal pulse is equal to the
amplitude of appearing an acausal pulse having the same amplitude, but with an
opposite sign. So the resulting amplitude is be equal to zero and no motion appears.

3 Applications for Generating Wavelets

As shown in previous paragraph, acausal pulses similar to test-functions can’t be
generated by equations with partial derivatives (such as in [4]) such as the wave
equation, due to the changes appearing at a certain moment of time, on a very
small length ∆x , for an infinite number of state-variables. The statistic method
presented for justifying the fact that such acausal pulses are not observed implies
also the fact that statistic computer methods for generating different functions
using differential equations (by varying the initial conditions) are not adequate
for test-functions. So for wavelets processing applications, we must use practical
test-functions, generated by differential equations of evolution.

A first choice would be the use of a practical test-function for a primary multi-
plication of the received signal before multiplying this signal with an alternating
function (the wavelet); yet this would imply two operations to be performed
upon this received signal. This can be avoided if we use the associative prop-
erty of multiplication. By noting the received signal with f , the wavelet with w
and the practical test function with ϕ (t) , we can write the results z of both
operations (the function which must be integrated) under the form

z (t) = w (t) [ϕ (t) f (t)] (15)

or under the form
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z (t) = [w (t)ϕ (t)] (t) = wϕ (t) f (t) . (16)

The function wϕ (t) can be obtained by multiplying the usual wavelet with a
practical test function; it is used further for processing the received signal f (by
multiplying and integrating the result on a limited time interval). Due to the
fact that the values of the practical test function ϕ (t) and of certain number
of its derivatives are also equal to zero at the beginning and the end of the
integrating period, the values of the function wϕ (t) and of a certain number of
its derivatives will be also equal to zero at these moments of time. Thus wϕ (t)
possess properties similar to test functions. Moreover, if the usual wavelet w (t)
is asymmetrical as related to the middle of the working period, than the function
wϕ (t) is also asymmetrical as related to this moment ( ϕ (t) being symmetrical
as related to this moment) and the integral of wϕ (t) on the whole real axis will
be equal to zero. By adjusting the magnitude of the practical test function the
integral of [wϕ (t)]2 can be made equal to unity, and thus wϕ (t) becomes also a
wavelet. In this manner wavelets similar to test functions can be generated.

4 Conclusions

This paper has presented the possibility of some acausal pulses to appear as
solutions of the wave-equation for a free string considered on the length interval
(0, l). Such pulses are in fact extended Dirac functions which can be imagined
as coming from outside the string. It is shown that the possibility of appearing
such pulses represents in fact a bifurcation in the phase-space of the string. This
study tries to apply this concept to stochastic jumps on trajectories determined
by test functions (having an infinite number of derivatives different to zero inside
a limited open set and equal to zero outside it). Then the utility of using prac-
tical test-functions (functions similar to such extended Dirac-functions, which
can be generated by a differential equation of evolution) in wavelets analysis is
presented.
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