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Abstract. As it is known, a first step in modeling dynamic phenom-
ena consists in measuring with higher accuracy some physical quantities
corresponding to the dynamic system. However, for suddenly-emerging
phenomena ,the data acquisition can’t be restricted at sampling proce-
dures for a received signal (corresponding to a certain physical quantity).
A significant quantity is represented by the derivative (the slope) of the
received signals, because all dynamical models must take it into consid-
eration. Usually the derivative of a received signal is obtained by filtering
the received signal and by dividing the difference between the filtered val-
ues of the signal at two different moments of time at the time difference
between these time moments. Many times these filtering and sampling
devices consists of low-pass filters represented by asymptotically stable
systems, sometimes an integration of the filter output over a certain
time interval being added. However, such a structure is very sensitive at
random variations of the integration period, and so it is recommended
the signal which is integrated to be approximately equal to zero at the
end of the integration period. It will be shown that the simplest struc-
ture with such properties is represented by an oscillating second order
computer-driven system working on a time period.

1 Introduction

It is known that the derivative of a received signal is usually obtained by filtering
the received signal (using low-pass filters) and by dividing the difference between
the filtered values of the signal at two different moments of time at the time
difference between these time moments. The time difference ∆t is very small
and it is usually set by oscillators having a higher accuracy, and so it can be
considered as constant.

Usually the filtering device consists of low-pass filters represented by asymp-
totically stable systems, sometimes an integration of the filter output over a
certain time interval being added. However, such a structure is very sensitive at
random variations of the integration period, and so it is recommended the signal

� This work is partly supported by the European Commision under contract EVG1-
CT-2002-0062 (OPTSDET).

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 585–591, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



586 A. Sterian and G. Toma

which is integrated to be approximately equal to zero at the end of the integra-
tion period. So we must try to use oscillating systems for filtering the received
signal (just in this case the filtered signal and its slope are approximately zero
at the end of a certain time interval). However, for avoiding instability of such
oscillating systems we must add certain electronic devices (gates) controlled by
computer commands, so as to restore initial null conditions for the oscillating
system. Before designing such a structure, we must notice that filtering and
sampling devices consisting of low-pass filters of first or second order have the
transfer function

H(s) =
1

T0s + 1
(1)

(for a first order system) and

H(s) =
1

T 2
0 s2 + 2bT0s + 1

(2)

(for a second order system). They attenuate an alternating signal of angular
frequency ω >> ω0 = 1/T0 about ω/ω0 times (for a first order system) or about
(ω/ω0)2 times (for a second order system). The response time of such systems
at a continuous useful signal is about 4 − 6T0 (5T0 for the first order system
and 4T0/b for the second order system). If the signal given by the first or second
order system is integrated over such a period, a supplementary attenuation for
the alternating signal of about 4 − 6ω/ω0 can be obtained.

However, such structures are very sensitive at the random variations of the
integration period (for unity-step input, the signal, which is integrated, is equal
to unity at the sampling moment of time). Even if we use oscillators with a very
high accuracy, such random variations will appear due to the fact that an electric
current charging a capacitor usually performs the integration. This capacitor
must be charged at a certain electric charge Q necessary for further conversions;
this electric charge can’t be smaller than a certain value Qlim, while it has to
supply a minimum value Imin for the electric current necessary for conversions
on the time period tconv required by these conversions, the relation

Qlim = Imintconv (3)

being valid. So the minimum value Iint(min) for the electric current charging
the capacitor in the integrator system is determined by the relation

Iint(min) =
Qlim

tint
(4)

where tint is the integration period required by the application (knowing the
sampling frequency fs, we can approximately establish tint using the relation
tint = 1/fs). So the current charging the capacitor can’t be less than a certain
value. thus random variations of the integration period will appear due to the
fact that the random phenomena are generated when a nonzero electric current
is switched off.
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These random variations can’t be avoided if we use asymptotically stable
filters. By the other hand, an improvement in an electrical scheme used for
integrators in analog signal processing (see [1], [2]) can’t lead to a significant
increasing in accuracy, as long as such electronic devices perform the same task
(the system has the same transfer function). There are also known techniques
for reducing the switching noise in digital systems, but such procedures can be
applied only after the analog signal is filtered and sampled, so as to be prepared
for further processing. So we must give attention to some other kind of trans-
fer functions and to analyze their properties in case of filtering and sampling
procedures.

Mathematically, an ideal solution consists in using an extended Dirac function
for multiplying the received signal before the integration (see [3]), but is very
hard to generate thus extended Dirac functions (a kind of acausal pulses) using
nonlinear differential equations (see [4] for more details). So we must use some
simple functions for solving our problem.

2 The Necessity of Using Oscillating Systems for
Filtering the Received Signal

As it has been shown, first or second order stable systems are not suitable for
filtering the received signal in case of integration and sampling procedures. They
do not have the accuracy required by the operation

u(t2) − u(t1)
t2 − t1

=
u(t2) − u(t1)

∆t
(5)

We need a system having the following property: starting to work from initial
null conditions, for a unity step input it must generate an output and a derivative
of this output equal to zero at a certain moment of time (the condition for the
derivative of the output to be equal to zero has been added so as the slope and
the first derivative of the slope of the signal which is integrated to be equal to
zero at the sampling moment of time, when the integration is interrupted). It is
quite obvious that the single second order system possessing such properties is
the oscillating second order system having the transfer function

Hosc =
1

T 2
0 s2 + 1

(6)

receiving a step input and working on the time interval [0, 2πT0]. For initial
conditions equal to zero, the response of the oscillating system at a step input
with amplitude A will have the form

y(t) = A

(
1 − cos

(
t

T0

))
(7)

By integrating this result on the time interval [0, 2πT0], we obtain the result
2πAT0, and we can also notice that the quantity which is integrated and its
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slope are equal to zero at the end of the integration period. Thus the influence
of the random variations of the integration period (generated by the switching
phenomena ) is practically rejected.

Analyzing the influence of the oscillating system upon an alternating input,
we can observe that the oscillating system attenuates about (ω/ω0)2 times such
an input.

The use of the integrator leads to a supplementary attenuation of about
[(1/(2π)(ω/ω0)] times. The oscillations having the form

yosc = a sin(ω0t) + b cos(ω0t) (8)

generated by the input alternating component have a lower amplitude and give
a null result after an integration over the time interval [0, 2πT0].

As a conclusion, such a structure provides practically the same performances
as a structure consisting of an asymptotically stable second order system and an
integrator (response time of about 6T0, an attenuation of about (1/6)(ω/ω0)3

times for an alternating component having frequency ω) moreover being less sen-
sitive at the random variations of the integration period. It is the most suitable
for the operation

u(t2) − u(t1)
∆t

(9)

where ∆t = t2 − t1. For restoring the initial null conditions after the sampling
procedure (at the end of the working period) some electronic devices must be
added. In the next section it will be shown that these devices must be represented
by computer-driven electronic gates which must discharge certain capacitors at
the end of each period of the oscillating system (a period corresponding to a
working time).

3 The Necessity of Comparing the Value of the
Derivative over Two Working Periods

The most simple structure having the transfer function

H =
1

T 2
0 s2 + 1

(10)

consists of some operational amplifier for lower frequency, with resistors R0 con-
nected at the (-) input and capacitors C0 connected between the output and
the (-) input (the well-known negative feedback) together with computer-driven
electronic gates (for discharging these capacitors at the end of each working pe-
riod); no resistors and capacitors are connected between the (+) connection and
the ”earth” (as required by the necessity of compensating the influence of the
polarizing currents at the input of the amplifiers), so as to avoid instabilities
of operational amplifiers at higher frequencies. In figure 1 is represented such a
structure, having the period of oscillation of about 15µs (the capacity of C1 and
C2, corresponding to C0, being set to 69pF ). However, tests have shown that,
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Fig. 1. Circuit for medium frequency

for a constant input A, the output is about 0.35A at the end of a period )instead
of zero). So the capacitors were replaced by some others, having a capacity 10
times greater than the capacity of C1 and C2 in figure 1. Thus the time period
became equal to 150µs. For a constant input A, the output of the oscillating
system is represented in figure 2. It can be noticed that the output is about 0.1A
at the end of a complete oscillation. The output of the oscillating system can be
integrated over a period using a similar device (based on an operational amplifier
with a resistor Ri connected at the (-) input and a capacitor Ci connected on
the negative feedback loop), at the end of the period the integrated signal being
sampled. For a robust integration, we must chose as sampling moment of time
the moment when the output is equal to zero (thus the working time interval
presents a small difference as related to a period of the oscillating system, a scan
be noticed studying figure 2). The time constants Ti - for the integrating system
- and T0 -for the oscillating system - have the form

Ti = RiCi, T0 = R0C0 (11)

If the resistors R0, Ri and the capacitors C0, Ci are made of the same material,
the coefficient for temperature variation will be the same for resistors and will
be also the same for capacitors. Thus the ratio

A
2πT0

Ti
= A

2πR0C0

RiCi
= 2πA

(
R0

Ri

)(
C0

Ci

)
(12)

(the result of the integration) is insensitive at temperature variations (for more
details, see [4]).

However, for determining the derivative of the received signal we can’t simply
use the ratio

u(t2) − u(t1)
t2 − t1

=
u(t2) − u(t1)

∆t
(13)
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Fig. 2. Output of circuit for working period of 150 µs

while it is quite possible for the received signal to begin to change its value,
with a constant slope, at a time moment within the working period [0, 2πT0] of
the oscillating system. Thus we can’t just consider the result obtained over two
successive working periods (presented above) as the value of the derivative. We
have to wait another working period, and then we must compare the values

u(t2) − u(t1)
t2 − t1

=
u(t2) − u(t1)

∆t
,

u(t3) − u(t2)
t3 − t2

=
u(t3) − u(t2)

∆t
(14)

and only when the result of these two operations are almost equal we can assign
their result to the value of the derivative of the received signal.

4 An Extension of the Notion of Observability

As it has been shown in the previous paragraph, in the conditions of a step input
the output of an oscillating second order system possesses two components: a
step component and an alternating component of angular frequency ω0. The fact
that this output and its derivative are equal to zero at the sampling moment of
time can be connected with the notion of observability in systems theory. At the
sampling moment of time, both the state variables y(t) and dy/dt are equal to
zero (are unobservable) and thus the signal which is integrated and its slope are
equal to zero at this moment of time (the whole sampling structure is practically
insensitive at the random variations of the integration period). However, there
is a major difference between the notion of observability in this case and the
usual notion of stability (considered for analog linear systems): in our case the
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state variables are analyzed from the observability point of view only at certain
moments of time (at the sampling moments of time).

5 Conclusions

This paper has presented a possibility of obtaining the derivative of the received
electrical signal using a filtering device consisting of an oscillating second order
system and an integrator. The oscillating systems is working on a time period
for filtering a received electrical signal, with initial null conditions. The output
of this oscillating system is integrated over this time period (at the end of this
period the integrated signal being sampled). In the conditions of a unity-step
input, the output of the oscillating system (the quantity which is integrated) is
practically equal to zero at the sampling moment of time (when the integration
is interrupted). The necessity of using two such oscillating systems if we intend
to process the received signal in a continuous manner has been also presented.
The method can be used for obtaining the derivative of the optoelectronic signal
in case of phase detection for vibration measurements (see [5]).
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