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Abstract. As it is known, Runge-Kutta methods are widely used for nu-
merical simulations [1]. This paper presents an application of such meth-
ods (performed using MATLAB procedures) for generating practical test
functions. First it is shown that differential equations can generate only
functions similar to test functions (defined as practical test functions);
then invariance properties of these practical test functions are used for
obtaining a standard form for a differential equation able to generate
such a function. Further this standard form is used for computer aided
generation of practical test-functions; a heuristic algorithm (based on
MATLAB simulations) is used so as to establish the most simple and ro-
bust expression for the differential equation. Finally it is shown that we
obtain an oscillating system (a system working at the limit of stability,
from initial null conditions, on limited time intervals) which can be built
as an analog circuit using standard electrical components and amplifiers,
in an easy manner.

1 Introduction

Many times the analysis of signals requires an integration on a limited time in-
terval, which can’t be performed in a robust manner (with sampling procedures)
without using functions similar to test-functions (for multiplying the received
signal before the integration, so as the result of the integration to be practi-
cally constant at the end of the integration period, at the sampling moment of
time). Usually this operation is performed by an integration of the signal on this
time interval, using an electric current charging a capacitor - the result of the
integration being proportional to the mean value of the signal. However, such
structures are very sensitive at random variations of the integration period. Even
when devices with higher accuracy are used for establishing this time interval
some random variations will appear due to the stochastic switching phenomena -
when the electric current charging the capacitor is interrupted. For this reason, a
multiplication of the received signal with a test-function - a function which differs
to zero only on this time interval and with continuous derivatives of any order
on the whole real axis - is recommended. In the ideal case, such a test-function
should have a form similar to a rectangular pulse - a unity pulse - considered on
this time interval. However, such test functions, similar to the Dirac functions,
can’t be generated by a differential equation. The existence of such an equation
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of evolution, beginning to act at an initial moment of time, would imply the
necessity for a derivative of certain order to make a jump at this initial moment
of time from the zero value to a nonzero value. But this aspect is in contradiction
with the property of test-functions to have continuous derivatives of any order
on the whole real axis, represented in this case by the time axis. So it results
that an ideal test-function can’t be generated by a differential equation. For this
reason, we must restrict our analysis at the possibilities of generating practical
test-functions. This practical or truncated test-functions differ to zero only on
a certain interval and possess only a finite number of continuous derivatives on
the whole real axis. We must find out what properties should be satisfied by a
differential equation of evolution, so as starting from certain initial conditions
such a practical test-function to be generated.

2 Preliminaries

In previous section has been shown that an ideal test function can’t be gener-
ated by an equation of evolution (see also [2]). Besides, the problem of generating
truncated test functions can’t be solved by studying aspects connected with soli-
tary waves [3] or by studying period doubling and chaos generated by thermal
instability [4], because we must restrict restrictt restrict our analysis at a certain
time interval and we must study only differential equations. So we must study
equations of evolution able to generate pulses available for our task - the multi-
plication with the received signal - so as the average procedure to be insensitive
at random variations of the integration period. The function which is integrated
must be as possible zero at the end of the integration period; this result can be
obtained only when the function which multiplies the received signal is a prac-
tical test function, how it has been shown. Finally the advantage of using such
practical test function for wavelets processing is presented.

3 Differential Equations Able to Generate Practical
Test-Functions

As it is known, a test-function on [a, b] is a C∞ function on R which is nonzero
on (a, b) and zero elsewhere. For example, the bump-like function

ϕ(τ) =
{

exp ( 1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise
(1)

is a test-function on [−1, 1].

Definition 1. An ideal test-function is a test-function that has a graph similar
to a rectangular pulse (a unity-pulse) which is 1 on (a, b) and 0 elsewhere.

For example, the bump-like function

ϕ(τ) =
{

exp ( 0.1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise
(2)
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is close to being an ideal test-function. Such ideal test functions are recommended
for multiplying the received signal.

Definition 2. A practical test-function on [a, b] is a Cn function f on R (for a
finite n) such that
a) f is nonzero on (a, b)
b) f satisfies the boundary conditions f (k)(a) = f (k)(b) = 0 for k = 0, 1, ..., n and
c) f restricted to (a, b) is the solution of an initial value problem (i.e. an ordinary
differential equation on (a, b) with initial conditions given at some point in this
interval).

The primary task of artificial intelligence consists in generating practical test-
functions by numerical integration, using the expressions of a certain test func-
tion and of some of its derivatives. An initial value problem will be established,
and the solution will be find using a Runge-Kutta method of order 4 or 5 in
MATLAB.

Subroutine 1. Identifying an initial value problem to generate practical test-
functions on [−1, 1] begins with considering differential equations satisfied by
the bump function ϕ; the first and second derivatives of ϕ are obtained (using
standard program for derivatives) under the form
Step A

ϕ(1)(τ) =
−2τ

(τ2 − 1)2
exp

(
1

τ2 − 1

)
(3)

ϕ(2)(τ) =
6τ4 − 2

(τ2 − 1)4
exp

(
1

τ2 − 1

)
(4)

Step B
A special algorithm tries to obtain a correspondence between the expressions
of test function and of its derivatives, by replacing the exponential function.
By simply dividing the function ϕ (τ) at ϕ(1) (τ) we obtain the correspondence
between ϕ (τ) and ϕ(1) (τ) under the form

ϕ(1) =
−2τ

(τ2 − 1)2
ϕ (5)

Then the special algorithm replaces the functions ϕ (τ) and ϕ(1) (τ) with func-
tions f (τ) and f (1) (τ); as initial conditions, it considers the values of ϕ (τ) at a
moment of time τ = −0.99 (close to the moment of time τ = −1). Thus it results
for generating a practical test function f the first order initial value problem

f (1) =
−2τ

(τ2 − 1)2
f, f(−0.99) = ϕ(−0.99) (6)

The initial condition is roughly 1.5 × 10−22, which means approximately zero.
Numerical integration gives a solution having the form of ϕ but with a very
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small amplitude of 10−12. The same way this special algorithm obtains a corre-
spondence between the expressions of ϕ,ϕ(2); this results under the form

ϕ(2) =
6τ4 − 2

(τ2 − 1)4
ϕ (7)

The replacement of functions ϕ,ϕ(2) with functions f, f (2) and the initial con-
dition under the form f(−0.99) = ϕ(−0.99), f (1)(−0.99) = ϕ(1)(−0.99) leads to
the second order initial value problem for generating a practical test function f

f (2) =
6τ4 − 2

(τ2 − 1)4
f, f(−0.99) = ϕ(−0.99), f (1)(−0.99) = ϕ(1)(−0.99) (8)

Numerically integration gives a solution similar to ϕ, but with an amplitude that
is only four times greater than that obtained from the first order initial value
problem.

Step C
The algorithm analyzes the possibilities of generating a practical test function
similar to an ideal unitary pulse. For this purpose, it replaces the bump-like
function ϕ (τ) with the almost ideal test function

ϕa(τ) =
{

exp ( 0.1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise
(9)

In the same way used for studying possibilities of generating practical test-
functions similar to test-function ϕ (τ), the algorithm analyzes possibilities of
generating practical test-functions similar to test-function ϕa (τ). Taking into ac-
count the expressions of ϕa, ϕ

(2)
a (obtained using standard algorithms for deriva-

tives), the correspondence between ϕa and ϕ
(2)
a results now under the form

ϕ(2)
a =

0.6τ4 − 0.36τ2 − 0.2
(τ2 − 1)4

ϕa (10)

By replacing the functions ϕa and ϕ
(2)
a with f and f (2) and considering similar

initial conditions f(−0.99) = ϕa(−0.99), f (1)(−0.99) = ϕ
(1)
a (−0.99) it results

the second order initial value problem under the form

f (2) =
0.6τ4 − 0.36τ2 − 0.2

(τ2 − 1)4
f, f(−0.99) = ϕa(−0.99), f (1)(−0.99) = ϕ(1)

a (−0.99)

(11)
Numerical integration (performed using MATLAB functions) gives a solution
that is nearly ideal; its amplitude is close to 1 for more than 2/3 of the interval
[−1, 1].

The whole heuristic program will continue by trying to design the most simple
differential equation able to generate a practical test function. The algorithm is
based on the fact that all practical test-functions numerically generated by the
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initial value problems considered so far are symmetric about τ = 0, which means
that they are invariant under the transformation

τ → −τ.

It results
Subroutine 2
Step A: Functions invariant under this transformation can be written in the
form f(τ2) and the second order differential equations generating such functions
must necessarily have the form

a2

(
τ2

) d2f

d (τ2)2
+ a1

(
τ2

) df

dτ2
+ a0

(
τ2

)
f = 0 (12)

Step B: Using standard algorithms, all derivatives presented in the previous
relation are replaced by derivatives having the form

b1(τ)
df

dτ
, b2(τ)

d2f

dτ2

Because
df

dτ
= 2τ

df

d (τ2)
and

d2f

dτ2
= 4τ2 d2f

d (τ2)2
+ 2

df

d (τ2)
(13)

the previous differential equation results now under the form

a2

(
τ2

)
4τ2

d2f

dτ2
+

(
a1

(
τ2

)
2τ

− a2

(
τ2

)
4τ3

)
df

dτ
+ a0

(
τ2

)
f = 0 (14)

Step C: Adding a possible free term in previous differential equation, it results
a model for generating a practical test-function using a received signal u =
u(τ), τ ∈ [−1, 1], under the form

a2

(
τ2

)
4τ2

d2f

dτ2
+

(
a1

(
τ2

)
2τ

− a2

(
τ2

)
4τ3

)
df

dτ
+ a0

(
τ2

)
f = u (15)

subject to
lim

τ→±1
fk(τ) = 0 for k = 0, 1, . . . , n,

which are the boundary conditions of a practical test-function. While we are
looking at the most simple solutions, the free term u is set by the algorithm to
a constant value.

Step D: The coefficient
a2

(
τ2

)
4τ2

which multiplies
d2f

dτ2
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is analyzed so as to result a constant expression for it. While the denominator
is 4τ2 , for the constant set to unity results a2 = 4τ2.

Step E: The coefficient (
a1

(
τ2

)
2τ

− a2

(
τ2

)
4τ3

)

which multiplies
df

dτ

is then analyzed so as to result a constant expression for it. While a2 = 4τ2

(from step D), starting an algorithm for polynomial expressions so as to obtain
a null coefficient (because we try to obtain the most simple differential equa-
tion), it results that a1 = 2 . Under these circumstances, the second term in the
differential equation vanishes.

Step F: For obtaining the coefficient a0

(
τ2

)
which multiplies the term f in

the differential equation the polynomial algorithm tries first to set a0 to zero.
But numerical simulation shows that the response does not satisfy the boundary
conditions. So the polynomial algorithm will set the coefficient a0 to unity, and
the differential equations results under the form

4τ2 d2f

d (τ2)2
+ 2

df

d (τ2)
+ f = u (16)

which converts to
d2f

dτ2
+ f = u (17)

This is an autonomous differential equation; the form being invariant at time
translation, so the point τ = −1 is translated to τ = 0. Thus we obtain the dif-
ferential equation of an oscillating second order system, described by the transfer
function

H(s) =
1

(T0)
2
s2 + 1

(18)

where T0 = 1 in our case.

Subroutine 3. We continue our study by analyzing the behavior of oscillating
systems in the most general case (when T0 �= 1). This implies a differential
equation under the form

(T0)
2 d2f

dτ2
+ f = u (19)

Step A. The behavior of this oscillating system can be obtained using standard
algorithms (being a linear second order system). When u is represented by a
constant, the output of the system consists of oscillations around a constant
value. Analyzing the coefficients of the linear differential equation obtained, the
existence of the oscillating linear system can be easy noticed, and the working
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interval can be set to the time interval corresponding to an oscillation, this means
the time interval [0, 2πT0]. When u = 1, the model generates the practical test-
function

f(τ) = 1 − cos (τ/T0) (20)

Step B. The algorithm generates the output of the oscillating system under
the influence of a continuous useful signal u1 (supposed to be constant) with
an alternating noise u2 of angular frequency ω added. Using the property of
linearity, the equations

a2

(
τ2

) d2f1

d (τ2)2
+ a1

(
τ2

) df1

dτ2
+ a0

(
τ2

)
f1 = u1 (21)

and

a2

(
τ2

) d2f2

d (τ2)2
+ a1

(
τ2

) df2

dτ2
+ a0

(
τ2

)
f = u2 (22)

imply that f = f1 + f2 is a solution of

a2

(
τ2

) d2f

d (τ2)2
+ a1

(
τ2

) df

dτ2
+ a0

(
τ2

)
f = u1 + u2 (23)

(this aspect can be noticed by an algorithm by identifying constant values for the
coefficients of the differential equation used). This reduces the study of the model
when the input u is a mix of continuous useful signal and noise (an alternating
input for example) to two cases: that of a continuous useful signal, and that
of the noise. Then we can add the results to obtain the output when the noise
overlaps the useful signal.

Step C. By checking the performances of this system under the influence of
an external constant input u = 1, an averaging procedure on the working time
interval [0, 2πT0] shows that it recovers the mean value of the useful signal u = 1
over this interval:

1
2πT0

∫ 2πT0

0

(1 − cos (τ/T0)) dτ = 1 (24)

The human user can also notice that the integration of this practical test-function
on [0, 2πT0] is practically insensitive to the switching phenomena appearing at
the sampling moment of time 2πT0 because

f (2πT0) = 0 and f (1) (2πT0) = 0 (25)

Step D. By the other hand, an analysis of the oscillating system for an alter-
nating input of u = sin ωτ with frequency ω >

√
2/T0 shows that the system

attenuates this input: ∣∣∣∣ input
output

∣∣∣∣ = (T0ω)2 − 1 > 1 (26)
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The human observer can notice that oscillations of the form

a sin (t/T0) + b cos (t/T0) (27)

generated by the alternating component of the input account for all the solutions
of the associated homogeneous system

(T0)
2 d2f

dτ2
+ f = 0 (28)

These oscillations give null result by an integration over the working interval
[0, 2πT0].

Final Conclusion. By comparing the fact that the mean value of the received
useful signal (supposed to be constant) can be obtained using a linear differential
equation where the external signal appears as a free term (this being a task
performed by artificial intelligence), the human user can replace the use of a
practical test function in a multiplying procedure (when it multiplies the received
signal) with an use of a practical test function represented by a linear oscillating
system in a generating procedure (the external signal representing the free term
in the differential equation corresponding to the oscillating system).

As a conclusion, the simplest model for generating practical test-functions on
[0, 2πT0] when the continuous signal is u = 1 designed using computer generated
practical test functions based on MATLAB procedures and standard algorithms
and verified using the same MATLAB procedures consists of the second order
oscillating system

(T0)
2 d2f

dτ2
+ f = u (29)

over the interval [0, 2πT0], in which test-functions are subject to the boundary
conditions

f(0) = 0, f (2πT0) = 0 (30)
these implying also

f (1) (2πT0) = 0, f (1) (2πT0) = 0 (31)

4 Conclusions

This paper has presented a heuristic algorithm for generating practical test func-
tions using MATLAB procedures. First it has been shown that ideal test func-
tions can’t be generated by differential equations, being underlined the fact that
differential equations can generate only functions similar to test functions (de-
fined as practical test functions). Then a step by step algorithm for designing
the most simple differential equation able to generate a practical test function
is presented, base on the invariance properties of the differential equation and
on standard MATLAB procedures. The result of this algorithm is represented
by a system working at the stability limit from initial null conditions, on limited
time intervals, the external signal representing the free term in the differential
equation corresponding to the oscillating system. Such a system can be built
using standard components and operational amplifiers, in an easy manner.
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