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Abstract. This papers presents properties of dynamical systems able
to generate practical test-functions (defined as functions which differ to
zero on a certain interval and possess only a finite number of continuous
derivatives on the whole real axis) when the free-term of the differen-
tial equation (corresponding to the received input signal) is represented
by alternating functions. The shape of the output signal (obtained by
numerical simulations in Matlab based on Runge-Kutta functions) is an-
alyzed, being shown that for high-frequency inputs an external observer
could notice (in certain condition) the generation of two different pulses
corresponding to two distinct envelopes. Such as aspect differs to the os-
cillations of unstable type second order systems studied using difference
equations.

1 Introduction

In the ideal mathematical case, suddenly emerging pulses should be simulated
using test-functions (functions which differ to zero only on a limited time in-
terval and possessing an infinite number of continuous derivatives on the whole
real axis. However, such test functions, similar to the Dirac functions, can’t be
generated by a differential equation. The existence of such an equation of evo-
lution, beginning to act at an initial moment of time, would imply the necessity
for a derivative of certain order to make a jump at this initial moment of time
from the zero value to a nonzero value. But this aspect is in contradiction with
the property of test-functions to have continuous derivatives of any order on the
whole real axis, represented in this case by the time axis. So it results that an
ideal test-function can’t be generated by a differential equation. For this reason,
the analysis must be restricted at practical test-functions [1], defined as func-
tions which differ to zero on a certain interval and possess only a finite number
of continuous derivatives on the whole real axis. Mathematical methods based
on difference equations are well known [2], but for a higher accuracy of the com-
puter simulation we shall use Runge-Kutta methods in Matlab. The properties of
dynamical systems able to generate such practical test-functions will be studied,
for the case when the free-term of the differential equation (corresponding to the
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received input signal) is represented by alternating functions. The shape of the
output signal (obtained by numerical simulations in Matlab based on Runge-
Kutta functions) will be analyzed, being shown that for high-frequency inputs
an external observer could notice (in certain condition) the generation of two
different pulses corresponding to two distinct envelopes. Such as aspect differs
to the oscillations of unstable type second order systems studied using difference
equations [3].

2 Equations Suitable for Generating Symmetrical Pulses

As it is known, a test-function on [a, b] is a function which is nonzero on this
interval and which possess an infinite number of continuous derivatives on the
whole real axis. For example, the function

ϕ(τ) =
{

exp ( 1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise

is a test-function on [−1, 1]. If the graph of the test-function is similar to the
rectangular pulse (a unity-pulse), it is considered to be an ideal test-function.
An example is the case of the function

ϕ(τ) =
{

exp ( 0.1
τ2−1 ) if τ ∈ (−1, 1)

0 otherwise

is close to being an ideal test-function.
Using the expression of ϕ(τ) and of its derivatives of first and second order,

a differential equation which admits as solution the function ϕ can be obtained.
However, a test-function can’t be the solution of a differential equation. Such
an equation of evolution implies a jump at the initial moment of time for a
derivative of certain order, and test-function must possess continuous derivatives
of any order on the whole real axis. So it results that a differential equation which
admits a test-function ϕ as solution can generate only a practical test-function f
similar to ϕ, but having a finite number of continuous derivatives on the whole
real axis. In order to do this, we must add initial conditions for the function
f (generated by the differential equations) and for some of its derivatives f (1),
and/or f (2) etc. equal to the values of the test-function ϕ and of some of its
derivatives ϕ(1), and/or ϕ(2) etc. at an initial moment of time tin very close to
the beginning of the working interval. This can be written under the form

ftin
= ϕtin

, f
(1)
tin

= ϕ
(1)
tin

and/or f
(2)
tin

= ϕ
(2)
tin

etc. (1)

If we want to generate practical test-functions f which are symmetrical as
related to the middle of the working interval, we can choose as origin the middle
of this interval, and so it results that the function f should be invariant under
the transformation

τ → −τ



Filtering Aspects of Practical Test-Functions and the Ergodic Hypothesis 565

Functions invariant under this transformation can be written in the form f(τ2),
and so the form of a general second order differential equation generating such
functions must be

a2

(
τ2

) d2f

d (τ2)2
+ a1

(
τ2

) df

dτ2
+ a0

(
τ2

)
f = 0 (2)

However, for studying the filtering properties of practical test-functions we
must add a free-term, corresponding to the received signal (the input of the
system). Thus, a model for generating a practical test-function using a received
signal u = u(τ), τ ∈ [−1, 1], is

a2

(
τ2

) d2f

d (τ2)2
+ a1

(
τ2

) df

dτ2
+ a0

(
τ2

)
f = u (3)

subject to
lim

τ→±1
fk(τ) = 0 for k = 0, 1, . . . , n. (4)

which are the boundary conditions of a practical test-function.
The previous equation is linear as related to the input function u. So we

can study independently the output of the system for an input represented by
an alternating signal and for an input represented by a constant signal (a step-
input). The two outputs signals can be joined together for obtaining the output
signal for the case when the input is represented by a mix of a constant and of
an alternating function.

3 Filtering Aspects of Practical Test-Functions

When coefficients ak in (3) are set to

a2 = 0, a1 = 1 and a0 = −1, (5)

a first order system is obtained under the form

df

d (τ2)
= f + u (6)

which converts to
df

dτ
= 2τf + 2τu (7)

representing a damped first order dynamical system. For the an alternating input
u = sin 10τ , numerical simulations performed using Runge-Kutta functions in
Matlab show an attenuation of about A = 3. In figure 1 is represented the output
f of this system for u = sin(10τ), and in figure 2 is represented the output f
of this system for u = cos(10τ). It can be noticed that the mean value of the
output oscillations generated in these circumstances is a function of the phase
of the input signal. Similar aspects have been noticed for an alternating input
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Fig. 1. f versus time for first order damped system, input u = sin(10τ)
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Fig. 2. f versus time for first order damped system, input u = cos(10τ)

of the form u = sin(100τ) the output f of the dynamical system for this case
being represented in figure 3, or of the form u = cos(100τ) the output f of the
dynamical system for this case being represented in figure 4.

When a2 = 0, a1 = 1 and a0 = 0, another first order model is

df

d (τ2)
= u (8)

which converts to
df

dτ
= 2τu (9)
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representing an undamped dynamical system. The outputs f of this undamped
system are quite similar to the outputs of the previous damped system , for the
same inputs u (the differences are less than 15 %).

4 Connection with the Ergodic Hypothesis

Studying graphics presented in figure 3 and figure 4, we can notice the presence of
two distinct envelopes. Their shape depends on the phase of the input alternating
component. At first sight, an external observer could notice two different pulses
generated by the dynamical system (each one corresponding to an envelope). In
a more rigorous manner, we can consider that that at a certain moment of time
can be detected, with equal probability, one of the two branches of evolution
(corresponding to certain intervals around the two envelopes). Thus the mean
value of the output f on a small time interval can be considered not as a mean
value in time, but also as a mean value for two distinct internal states of the
system which exist together on this time interval. This is an aspect similar to
the ergodic hypothesis used in thermodynamics. By replacing the sinusoidal
alternating input u with rectangular alternating functions, the existence of two
different branches of evolution would become more obvious (the transition time
from one branch to the other would become very short, and so the probability of
measuring values different to the two envelopes for the output f .would decrease).
This aspect can be put in correspondence with aspects in quantum mechanics,
were distinct states can be measured at a certain moment of time, for certain
external interactions. The statistical aspects of measuring different values can
be studied using the dependence of the envelopes on the phase of the input
alternating component.
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Fig. 3. f versus time for first order damped system, input u = sin(100τ)
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Fig. 4. f versus time for first order damped system, input u = cos(100τ)

5 Conclusions

This study has presented filtering properties of practical test-functions, the input
being represented by alternating sinusoidal functions. The shape of the output
signal (obtained by numerical simulations in Matlab based on Runge-Kutta func-
tions) has been analyzed, being shown that for high-frequency inputs an external
observer could notice (in certain condition) the generation of two different pulses
corresponding to two distinct envelopes. This aspect has been put in correspon-
dence with aspects in quantum mechanics, were distinct states can be measured
at a certain moment of time, for certain external interactions. The statistical
aspects of measuring different values can be studied using the dependence of the
envelopes on the phase of the input alternating component.
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