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Abstract. The Grid environment contains a large and growing number of 
widely distributed sites with heterogeneous resources. It is a great challenge to 
dynamically manage and account for usage data of Grid resources, such as 
computational, network, and storage resources. A distributed Resource Usage 
Data management and Accounting system (RUDA) is designed to perform 
accounting in the Grid environment. RUDA utilizes fully decentralized design 
to enhance scalability and supports heterogeneous resources with no significant 
impact on local systems. It can easily be integrated into Grid infrastructures and 
maintains the integrity of the Grid security features.  

1   Introduction 

Modern science and technology are increasingly collaborative and often demand huge 
computing and storage resources, which individual research organizations may not 
possess. A distributed infrastructure - Grids - was created in early 2000. Grid 
technology, such as the protocols and services developed by Globus [1], enables 
flexible, controlled resource sharing on a large scale. Driven by the demand and 
attracted by the promising future of Grids, Grid applications multiply swiftly and in 
turn drive the rapid development of Grid technology. While many Grid services are 
maturing, Grid accounting still remains a research issue. The Grid environment, 
which contains a large and growing number of widely distributed sites with 
heterogeneous resources, poses great challenges to Grid accounting. Rapid evolution 
of Grid software infrastructures and increasing security concerns add additional 
complications. Therefore, a Grid accounting system needs to be scalable, flexible, and 
secure [2]. Though many methods and tools have been successfully used in individual 
sites for resource usage management and accounting [3-4], they are local, centralized 
systems, of which the scalability is limited by the load capability and data size of the 
centralized server and database. These accounting methods and tools do not satisfy 
the requirements of Grid accounting.  

The Science Grid (SG) project is a collaboration involving researchers at Lawrence 
Berkeley (LBNL/NERSC), Pacific Northwest (PNNL), Argonne (ANL), and Oak 
Ridge (ORNL) National Laboratories, sponsored by the U.S. Department of Energy 
(DOE), to explore the Grid environment for use with the large-scale computer and 
storage systems available at DOE sites. The ability to properly account for resource 
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usage across such a Grid is crucial to its acceptance and use. To the best of our 
knowledge at the time of this project started, there was no Grid accounting system 
that could meet the challenges of the Grid environment.  

We have designed and prototyped a Grid Resource Usage Data management and 
Accounting system (RUDA). RUDA is designed in a fully distributed manner for 
scalability. It employs customizable interfaces to communicate with local systems to 
support widely diversified resources without significant impact on them. RUDA 
leverages security features embedded in Globus for secure wide-area communication, 
and accommodates current economic models of the Grid with respect to valuation of 
resources. RUDA is an essentially self-contained system that can be easily integrated 
into the Grid environment. 

The following three sections present the system architecture, the accounting 
process, the feature design targets and approaches. In later sections, the 
implementation and experiment of the prototype are discussed.  

2   System Architecture 

In the Grid environment for which RUDA is designed, resources are provided by 
computer centers or divisions of individual sites. The users are organized in research 
projects and each project has charge-account(s) used by the providers to credit/charge 
the allocations of the project. The allocation in a charge-account may be distributed to 
the individual users who share this account.  

The basic building-block of RUDA is a client/server software package. The 
multithreaded server consists of core-software and interfaces. The latter collects 
resource usage data from local accounting systems and the former, isolated from the 
local system, provides data management, accounting, and web interface services. A 
RUDA server can be configured in two running modes, called basic-server and head-
server respectively. The client-process provides the services for users/administrators 
to access/control the server and for other servers in RUDA to communicate with this 
server. The client-process resides on the same machine with its server. The Globus 
Toolkit’s GRAM [5] commands are employed to remotely run the client-process to 
communicate with the server from any computer on the Grid.  

In RUDA, a basic-server daemon runs on each participating resource and 
periodically pulls resource usage information of Grid users from the local accounting 
system. It manages and accounts for the resource usage data, and stores the records in 
a local MySQL database. Head-servers are used to aggregate accounting and usage 
information for organizations, projects, and other interested entities; they can be 
deployed on any computer on the Grid. The head-server is configured to select the 
“member” head- or basic-servers, which contain the resource usage data of interest, 
and the head-server queries desired data segments from each member server by 
running the client-process of the member remotely with criteria for the specified 
projects, charge-accounts, and users. The member server writes the requested data set 
into a RUDA standard data file. Transferring the data back by GridFTP [5], the head 
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server manages and  accounts  for the data collectively. Since a head-server can 
collect data from both basic-servers and other head-servers, a RUDA system with 
flexible hierarchical structures can be built for large organizations to perform 
accounting.  

RUDA also provides allocation services. In the DOE community, allocation on 
major resources requires pre-approval of authorized administrators. RUDA server 
provides web interfaces for project Principle Investigators (PIs) to check available 
resources and to apply for allocation. 

 

Figure 1 shows a much simplified RUDA system example. Independent and 
geographically separated sites A and B provide computer resources to the Grid. A 
basic-server on each individual computer collects data and accounts for the Grid 
resource usage at the levels of job, user, and charge-account. The resource providers, 
Site-A and two divisions at Site-B, employ head-servers to manage and account for 
their resource usage. Each head-server collects data from its member servers and 
performs accounting collectively at the levels of user and charge-account. These 
head-servers need not to collect detailed data at job level unless desired. Projects C 
and D use computer resources at both Site-A and Site-B. Each PI runs a head-server 
and configures relevant servers as its members. This also provides a simple example 
of the hierarchical structure of the system. 

Fig. 1. A simple example of RUDA system
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3   Accounting Process 

3.1   Standard Resource Usage Records and Global User Identifications 

Grid accounting systems must manage and exchange resource usage data globally, 
however there are currently no standards for this type of data. For example, a survey 
[6] shows that more than 15 technical terms are used for CPU usage records by 
various local accounting systems in 5 national laboratories, and each of them has its 
own definition and data type. To perform Grid accounting, a standard set of usage 
record fields has to be defined and a mechanism to convert the local fields into the 
standard fields needs to be developed. A standard set of resource usage fields has 
been defined for RUDA based on the Global Grid Forum (GGF) suggestions, a survey 
of DOE laboratories [6,8], and a more detailed examination of local accounting 
systems used at ORNL, PNNL, and LBNL/NERSC. A data structure called data-
cargo accommodates the standard fields within RUDA servers and a corresponding 
file format is used when exchanging records within a distributed RUDA deployment. 
For each new type of local accounting system, a customized reference table needs to 
be setup to allow the standardization routine of RUDA server interface to convert the 
local system’s input records into a standard data set and store them in a data-cargo 
structure.  

Grid-wide user identification is also critical for Gird accounting. One user may use 
different user identifications (IDs) on different computers. To uniquely identify users 
Grid-wide, rules to create global user IDs have to be defined.  

RUDA utilizes the Grid user distinguished name (GUdn) as its global user ID. 
GUdn is defined by Grid Security Infrastructure (GSI) [5] of Globus. For 
authentication purpose, GSI grants each user a user-certificate, which contains a 
globally unique GUdn. For access control purpose, each resource has a grid-map file 
to map each GUdn with local user ID (LUid). Using information extracted from the 
grid-map file, a RUDA basic-server can pair up LUids with GUdns. The standard 
data record contains both GUdn and LUid for user identification.  

When the customized interface of basic-server reads data in, it calls the 
standardization routine to covert the local data into a standard data set, pairs up each 
GUdn with LUid, and fills the standard data set into a data-cargo structure which is 
ready to be transferred to RUDA server for usage data normalization and accounting. 

3.2   Usage Data Normalization and Accounting 

Various Grid resources carry different qualities of service and different capabilities. 
The ability to normalize accounting data across diverse Grid resources is important to 
the Grid “economy” [2, 9], especially if user resource allocations are fungible across 
multiple resources. RUDA provides the flexibility to support economy-based pricing 
of Grid resources. RUDA defines a “RUDA-allocation-unit (RAU$)” as the standard 
charge unit and each server performs accounting for each job according to a 
customized formula. The formula currently used in the prototype is 
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Here, n is the total number of resource categories of the standard resource usage data 
set and i spanning from 1 to n represents category index. Weight(i) presents the 
weight factor of resource category i. m is the total number of the global weight 
factors. The global_weight(j) is j’th global weight factor, such as the priority or 
quality of service, usage timing (peak, off-peak), or any factors which effect the 
overall cost of a job.  

Referring the “Demand and supply model” suggested by [2], the weight factors of 
each resource can be configured by its provider independently according to their site 
policy and user demand, though the Grid administrator may publish a list of weight 
factors for a number of commonly used resources as reference. Grid economy 
research shows that this model would regulate the resource demand and supply 
automatically, give each site maximum control over the price, and eliminate the 
necessity of centralized resource evaluation. The formula and the weight factor 
information are stored in the server’s database and available for users upon request.  

The basic-server on each resource records the usage data and charge of each 
running job in a dynamic data structure. Upon the completion of a job, its data are 
moved into a local database. Based on the data of both current and completed jobs, 
the server calculates the individual category resource usage and total charges 
accumulated since the beginning of current accounting period for each user, charge-
account, and project respectively. By means of head-server(s), PIs or users collect the 
relevant data from the resources they use and account aggregately for their dynamical 
Grid resource usage and total charges.  

4   Feature Design Targets and Approaches 

4.1   Scalability 

The large and growing scale of Grid environments poses great challenges to the 
accounting system design. Instead of technically enhancing the capability of the 
centralized server and database, RUDA takes a distributed approach that focuses on 
maximally decoupling the loads of the server and database from the scale of Grid. The 
data collection and storage are performed locally by a basic-server on each resource 
entity. Therefore the basic-server load and its database size are independent of the 
Grid scale. Head-servers perform usage data management and accounting for projects 
or providers. A head-server for a provider manages the data on the resources they 
provided. A head-server for a PI only sees the data relevant to his/her project or 
group.  The data collected/managed by a head-server and stored in its database 
depends on the size of the project/group or the resource provider’s environment, not 
on the scale of the Grid. This decoupling strategy eases the scalability limitation 
caused by database size and server load without requiring breakthrough technologies. 
The flexible head-server architecture also enhances scalability, since servers can be 
deployed as needed on a per-project, per-provider, or other basis. It is only necessary 
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for a head-server to know which other servers to poll to obtain the desired resource 
usage information. In the DOE laboratory environment, this is fairly straightforward, 
since accounts and allocations are typically tracked and already known to the 
providers/PIs. 

4.2   Security 

Significant efforts in Grid software development have gone into secure network 
communications and remote interactions. The Globus Grid Security Infrastructure 
(GSI) is based on existing standard protocols and APIs [5] and extends these 
standards to single sign-on and delegation, forming a comprehensive security system 
[10]. RUDA employs the Globus toolkit, and GSI in particular, to enable secure 
authentication and communication over the open network. For instance, to collect data 
from a remote basic-server, a head-server issues a GRAM command to call the basic-
server’s client-process remotely for data query. The Globus servers on both ends then 
handle mutual authentication and secure remote communication for the RUDA 
servers. During the data transfer procedure, GridFTP manages the mutual 
authentication and insures the communication integrity. In this way, RUDA is based 
upon standard Globus security features.  

The authorization for data access is performed by the RUDA server in two layers. 
One layer is applied to authorize a basic-server collecting data from the local system. 
Each basic-server owns a user/project map provided by the local administrator 
through a configuration file. The map lists the users and projects of which the data is 
allowed for RUDA to access, and the server interface limits queries to the authorized 
data only. The other layer is control of the access to the RUDA server’s database. The 
database contains the user attributes originally obtained from the local system. When 
a remote user queries for data, the server performs the data access control according 
to the user status.  For example, an ordinary user can only access his/her own data, 
while a PI can access the data of their entire project/group.  

4.3   Fault Tolerance 

We have chosen a fail-over mechanism as a short-term solution to fault tolerance. We 
run backup daemons on backup machines, which periodically probe the existence of 
running daemons. A backup daemon of basic-server also keeps a copy of the current 
resource usage data of the running daemon. Once a failure is detected, the backup 
daemon can conclude that the original daemon or machine has died and inform the 
other daemons that are interacting with the original daemon that it has taken over. 
Simultaneously, the backup daemon informs the system administrators that the fail-
over has occurred. The backup daemon of a basic-server only provides the latest 
accounting data upon request. The administrator is expected to troubleshoot and 
recover the original server or machine as soon as receiving the failure information.  

Although the above mechanism is easy to implement and sufficient for a small 
group of RUDA daemons, it can not distinguish network partition from machine 
failure, handle simultaneous failures of the original and backup daemons, or deal with 
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 the complications in a large distributed environment. We have chosen the group 
membership management mechanisms as the long-term approach to fault tolerance 
[11, 12]. In such a system, the RUDA daemons will monitor one another and operate 
self-healing mechanisms once they agree that a group member has failed.  

4.4   Flexibility and Manageability 

RUDA’s design includes interfaces that can be customized to communicate with local 
accounting systems, allowing RUDA to support heterogeneous resources with various 
local accounting systems with a minimum local impact. To avoid the complications 
caused by the modification of Grid software infrastructure, RUDA software is built to 
be essentially self-contained. The utilization of Grid infrastructure is limited to its 
high level APIs and the modifications behind the APIs have no effect on RUDA. 
Furthermore, the APIs are called in a couple of customization routines. By modifying 
the customization routines, RUDA can utilize various versions of Globus or other 
Grid infrastructures. 

The RUDA server is fully configurable, such as its user/project map, data polling 
period, data backup method, and so on, and supports runtime reconfiguration. By 
means of GRAM and RUDA command line interfaces, the administrator can 
configure and control the server remotely from any computer on the Grid.  

5   Prototype Implementation  

A prototype of RUDA has been developed on an SG testbed. It contains most of the 
major components of RUDA to test the feasibility of RUDA design, but the fail-over 
mechanism is not implemented due to lack of backup machines. The functions of 
prototype’s client/server package are briefly described in the following. 

The server chooses one of the three data collection interfaces (Fig. 2) according to 
its configuration. The interface shown on the left side of Fig. 2 accepts RUDA 
standard data files transferred between RUDA servers. The one in the middle is the 
major data input port of basic-server. By means of the customized routine, the 
interface inputs data from a local accounting system through CLIs/APIs provided by 
the system, converts them into a standard data set, and loads the server’s data-cargo. 
The interface on the right side is designed for situations where the additional security 
requirements are imposed. To secure sensitive information, some sites do not allow 
foreign access to the local systems and sensitive information must be filtered out 
before resource usage data reach the Grid. This interface provides an independent 
daemon process run by authorized site administrators. To periodically pull data from 
the local system, the daemon calls a customized routine, which filters out the sensitive 
information and coverts the local data into the standard data set. The daemon then 
loads the data into its MySQL database, which RUDA server is authorized to access. 
On receiving a new-data-ready signal from the daemon, the server reads in the data 
from the daemon database.  
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Upon receiving new data, the server core-software (Fig. 3) utilizes the customized 
formula shown in Section 3.2 to calculate the charge of individual jobs, and 
summarizes the usage data and charges from both current jobs and the jobs completed 
within the accounting period for users, charge-accounts, and projects. The updated 
current data are stored in server’s data structure and also copied into a local database 
called mirror-site, which can be used to recover the current data in case the need 
arises.  

 
 

 
 

The client-process only communicates with the server through local socket 
connections. The Globus toolkit GRAM is employed to run the client-process from a 
computer on the Grid to perform remote communications with the server.   

The prototype provides web interfaces for users to conveniently access their 
resource usage data and for PIs to check resource availability and apply allocations. 

Fig. 2. RUDA server block diagram part 1: Server interfaces 
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The command line interfaces are also provided for users query resource usage data, 
and for administrators to configure and manage the server locally or remotely.  

6   Experimental Results 

The prototype system has been experimented on the Earth System Grid (ESG). The 
ESG project uses Grid technology to support the climate research community to 
discover, access, and analyze large-scale global climate model simulation results in a 
distributed and heterogeneous computational environment. The RUDA prototype has 
been deployed on ESG computer resources at ORNL in Tennessee and National 
Center for Atmospheric Research in Colorado. The computer platforms include IBM 
AIX, Sun Solaris, and Linux redhat, on which the RUDA software is portable. Globus 
is the software infrastructure of ESG. GRAM and GridFtp of Globus Toolkit (version 
2.2.4) with embedded GSI are enabled on these machines, and MySQL and Apache 
web server are available.  

A total of five basic-server daemons ran in this experiment on a mixture of IBM 
AIX, Sun Solaris, and Redhat Linux systems, and a head-server daemon running on 
an IBM AIX machine configured them as its members. The average number of 
accounted jobs running simultaneously on each machine was at a level of a few tens 
to a hundred at any moment, with a duration varying from a few minutes to several 
days. Though a full set of standard resource usage fields had been defined in the 
prototype, only CPU time, wall time, and the memory usage (requested or high-water-
mark) were captured in this experiment. Artificial weight factors (see section 3.2) 
were assigned to simplify the process of checking accounting results.  

The experiment first ran for four weeks and concentrated on checking server 
functions. During this period, an error was reported by the head-server on data 
transfer from one of its member servers and it was caused by the downtime of that 
remote member computer. As mentioned, the fail-over mechanism has not been 
implemented. When a member server is down, the head-server uses the latest data set 
collected from that server as current data (with original data collection timestamp) 
until the member server is up and running again. The memory and CPU usage of the 
servers were also measured. According to the SG project’s survey of resource 
providers and users, updating resource usage data and accounting records every hour 
would fully satisfy the requirement of dynamic accounting. With this configuration, 
the CPU time was less than 190 seconds per day for the head-server, and 10 seconds 
for each basic-server, respectively. The memory usage (high-water-mark) of all 
individual servers is less than 3 MB. 

The experiment then continuously ran for 12 more weeks. All servers were 
configured to collect data every 4 minutes for experimental purposes. The snapshots 
of resource usage data and accounting results were taken and checked on a daily 
basis. All servers ran smoothly through the whole period and no accounting error was 
found. The RUDA web interfaces were used daily to monitor the system. The 
allocation application functions were also tested through the web interface, though the 
responses of administrators were performed automatically by a piece of simulation 
software.  
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7   Conclusion and Acknowledgement  

A Grid Resource Usage Data management and Accounting system, RUDA, has been 
designed for the DOE Science Grid project. A prototype RUDA system has been 
implemented and tested to demonstrate the feasibility of the design. With more 
customized data collection routines, RUDA can be deployed onto computers with 
various local accounting systems and onto other types of resources such as mass 
storage systems. We are planning to perform further experiments on a larger RUDA 
system, with fault tolerance features implemented, in the near future. 

We thank Scott Jackson and David Cowley at PNNL, the ORNL local accounting 
system development group at ORNL and East Tennessee State University, and 
Francesca Verdier at LBNL/NERSC for their support of our local accounting system 
investigation. The support from ESG project on the RUDA experimental deployment 
is also very much appreciated.  

Science Grid project is sponsored by the U.S. DOE Office of Science under the 
auspices of the Scientific Discovery through Advanced Computing program 
(SciDAC). ORNL is managed by UT-Battelle, LLC for the U. S. Department of 
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