

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 29 – 38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design and Prototype of RUDA,
a Distributed Grid Accounting System

M.L. Chen, A. Geist, D.E. Bernholdt, K. Chanchio, and D.L. Million

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{chenml, gst, bernholdtde, chanchiok, milliondl}@ornl.gov

Abstract. The Grid environment contains a large and growing number of
widely distributed sites with heterogeneous resources. It is a great challenge to
dynamically manage and account for usage data of Grid resources, such as
computational, network, and storage resources. A distributed Resource Usage
Data management and Accounting system (RUDA) is designed to perform
accounting in the Grid environment. RUDA utilizes fully decentralized design
to enhance scalability and supports heterogeneous resources with no significant
impact on local systems. It can easily be integrated into Grid infrastructures and
maintains the integrity of the Grid security features.

1 Introduction

Modern science and technology are increasingly collaborative and often demand huge
computing and storage resources, which individual research organizations may not
possess. A distributed infrastructure - Grids - was created in early 2000. Grid
technology, such as the protocols and services developed by Globus [1], enables
flexible, controlled resource sharing on a large scale. Driven by the demand and
attracted by the promising future of Grids, Grid applications multiply swiftly and in
turn drive the rapid development of Grid technology. While many Grid services are
maturing, Grid accounting still remains a research issue. The Grid environment,
which contains a large and growing number of widely distributed sites with
heterogeneous resources, poses great challenges to Grid accounting. Rapid evolution
of Grid software infrastructures and increasing security concerns add additional
complications. Therefore, a Grid accounting system needs to be scalable, flexible, and
secure [2]. Though many methods and tools have been successfully used in individual
sites for resource usage management and accounting [3-4], they are local, centralized
systems, of which the scalability is limited by the load capability and data size of the
centralized server and database. These accounting methods and tools do not satisfy
the requirements of Grid accounting.

The Science Grid (SG) project is a collaboration involving researchers at Lawrence
Berkeley (LBNL/NERSC), Pacific Northwest (PNNL), Argonne (ANL), and Oak
Ridge (ORNL) National Laboratories, sponsored by the U.S. Department of Energy
(DOE), to explore the Grid environment for use with the large-scale computer and
storage systems available at DOE sites. The ability to properly account for resource

30 M.L. Chen et al.

usage across such a Grid is crucial to its acceptance and use. To the best of our
knowledge at the time of this project started, there was no Grid accounting system
that could meet the challenges of the Grid environment.

We have designed and prototyped a Grid Resource Usage Data management and
Accounting system (RUDA). RUDA is designed in a fully distributed manner for
scalability. It employs customizable interfaces to communicate with local systems to
support widely diversified resources without significant impact on them. RUDA
leverages security features embedded in Globus for secure wide-area communication,
and accommodates current economic models of the Grid with respect to valuation of
resources. RUDA is an essentially self-contained system that can be easily integrated
into the Grid environment.

The following three sections present the system architecture, the accounting
process, the feature design targets and approaches. In later sections, the
implementation and experiment of the prototype are discussed.

2 System Architecture

In the Grid environment for which RUDA is designed, resources are provided by
computer centers or divisions of individual sites. The users are organized in research
projects and each project has charge-account(s) used by the providers to credit/charge
the allocations of the project. The allocation in a charge-account may be distributed to
the individual users who share this account.

The basic building-block of RUDA is a client/server software package. The
multithreaded server consists of core-software and interfaces. The latter collects
resource usage data from local accounting systems and the former, isolated from the
local system, provides data management, accounting, and web interface services. A
RUDA server can be configured in two running modes, called basic-server and head-
server respectively. The client-process provides the services for users/administrators
to access/control the server and for other servers in RUDA to communicate with this
server. The client-process resides on the same machine with its server. The Globus
Toolkit’s GRAM [5] commands are employed to remotely run the client-process to
communicate with the server from any computer on the Grid.

In RUDA, a basic-server daemon runs on each participating resource and
periodically pulls resource usage information of Grid users from the local accounting
system. It manages and accounts for the resource usage data, and stores the records in
a local MySQL database. Head-servers are used to aggregate accounting and usage
information for organizations, projects, and other interested entities; they can be
deployed on any computer on the Grid. The head-server is configured to select the
“member” head- or basic-servers, which contain the resource usage data of interest,
and the head-server queries desired data segments from each member server by
running the client-process of the member remotely with criteria for the specified
projects, charge-accounts, and users. The member server writes the requested data set
into a RUDA standard data file. Transferring the data back by GridFTP [5], the head

-

 The Design and Prototype of RUDA, a Distributed Grid Accounting System 31

server manages and accounts for the data collectively. Since a head-server can
collect data from both basic-servers and other head-servers, a RUDA system with
flexible hierarchical structures can be built for large organizations to perform
accounting.

RUDA also provides allocation services. In the DOE community, allocation on
major resources requires pre-approval of authorized administrators. RUDA server
provides web interfaces for project Principle Investigators (PIs) to check available
resources and to apply for allocation.

Figure 1 shows a much simplified RUDA system example. Independent and
geographically separated sites A and B provide computer resources to the Grid. A
basic-server on each individual computer collects data and accounts for the Grid
resource usage at the levels of job, user, and charge-account. The resource providers,
Site-A and two divisions at Site-B, employ head-servers to manage and account for
their resource usage. Each head-server collects data from its member servers and
performs accounting collectively at the levels of user and charge-account. These
head-servers need not to collect detailed data at job level unless desired. Projects C
and D use computer resources at both Site-A and Site-B. Each PI runs a head-server
and configures relevant servers as its members. This also provides a simple example
of the hierarchical structure of the system.

Fig. 1. A simple example of RUDA system

head-server of
collaboration C

Site-A Site-B

basic-servers
running on

Site-A
resources:

Web

basic-servers
running on
division 2
resources:

head-
server

of Site-
A

Basic-
server

basic-servers
running on
division 1
resources:

Grid

head-
server

of
div.2

basic-server running on a
resource entity ;

head-server running on a
Grid computer;

Grid;

PI of C Network;
Dashed lines: data/info flow;

Basic-
server

head-
server

of
div.1

Basic-
server Basic-

server

Basic-
server Basic-

server

Basic-
server Basic-

server

head-server of
collaboration D

Web
PI of D

32 M.L. Chen et al.

3 Accounting Process

3.1 Standard Resource Usage Records and Global User Identifications

Grid accounting systems must manage and exchange resource usage data globally,
however there are currently no standards for this type of data. For example, a survey
[6] shows that more than 15 technical terms are used for CPU usage records by
various local accounting systems in 5 national laboratories, and each of them has its
own definition and data type. To perform Grid accounting, a standard set of usage
record fields has to be defined and a mechanism to convert the local fields into the
standard fields needs to be developed. A standard set of resource usage fields has
been defined for RUDA based on the Global Grid Forum (GGF) suggestions, a survey
of DOE laboratories [6,8], and a more detailed examination of local accounting
systems used at ORNL, PNNL, and LBNL/NERSC. A data structure called data-
cargo accommodates the standard fields within RUDA servers and a corresponding
file format is used when exchanging records within a distributed RUDA deployment.
For each new type of local accounting system, a customized reference table needs to
be setup to allow the standardization routine of RUDA server interface to convert the
local system’s input records into a standard data set and store them in a data-cargo
structure.

Grid-wide user identification is also critical for Gird accounting. One user may use
different user identifications (IDs) on different computers. To uniquely identify users
Grid-wide, rules to create global user IDs have to be defined.

RUDA utilizes the Grid user distinguished name (GUdn) as its global user ID.
GUdn is defined by Grid Security Infrastructure (GSI) [5] of Globus. For
authentication purpose, GSI grants each user a user-certificate, which contains a
globally unique GUdn. For access control purpose, each resource has a grid-map file
to map each GUdn with local user ID (LUid). Using information extracted from the
grid-map file, a RUDA basic-server can pair up LUids with GUdns. The standard
data record contains both GUdn and LUid for user identification.

When the customized interface of basic-server reads data in, it calls the
standardization routine to covert the local data into a standard data set, pairs up each
GUdn with LUid, and fills the standard data set into a data-cargo structure which is
ready to be transferred to RUDA server for usage data normalization and accounting.

3.2 Usage Data Normalization and Accounting

Various Grid resources carry different qualities of service and different capabilities.
The ability to normalize accounting data across diverse Grid resources is important to
the Grid “economy” [2, 9], especially if user resource allocations are fungible across
multiple resources. RUDA provides the flexibility to support economy-based pricing
of Grid resources. RUDA defines a “RUDA-allocation-unit (RAU$)” as the standard
charge unit and each server performs accounting for each job according to a
customized formula. The formula currently used in the prototype is

 The Design and Prototype of RUDA, a Distributed Grid Accounting System 33

∏∑
==

×⎥
⎦

⎤
⎢
⎣

⎡ ×=
m

j

n

i

jweightglobaliweightiamountUsagegetotal_char
11

))(_())(())(_(

Here, n is the total number of resource categories of the standard resource usage data
set and i spanning from 1 to n represents category index. Weight(i) presents the
weight factor of resource category i. m is the total number of the global weight
factors. The global_weight(j) is j’th global weight factor, such as the priority or
quality of service, usage timing (peak, off-peak), or any factors which effect the
overall cost of a job.

Referring the “Demand and supply model” suggested by [2], the weight factors of
each resource can be configured by its provider independently according to their site
policy and user demand, though the Grid administrator may publish a list of weight
factors for a number of commonly used resources as reference. Grid economy
research shows that this model would regulate the resource demand and supply
automatically, give each site maximum control over the price, and eliminate the
necessity of centralized resource evaluation. The formula and the weight factor
information are stored in the server’s database and available for users upon request.

The basic-server on each resource records the usage data and charge of each
running job in a dynamic data structure. Upon the completion of a job, its data are
moved into a local database. Based on the data of both current and completed jobs,
the server calculates the individual category resource usage and total charges
accumulated since the beginning of current accounting period for each user, charge-
account, and project respectively. By means of head-server(s), PIs or users collect the
relevant data from the resources they use and account aggregately for their dynamical
Grid resource usage and total charges.

4 Feature Design Targets and Approaches

4.1 Scalability

The large and growing scale of Grid environments poses great challenges to the
accounting system design. Instead of technically enhancing the capability of the
centralized server and database, RUDA takes a distributed approach that focuses on
maximally decoupling the loads of the server and database from the scale of Grid. The
data collection and storage are performed locally by a basic-server on each resource
entity. Therefore the basic-server load and its database size are independent of the
Grid scale. Head-servers perform usage data management and accounting for projects
or providers. A head-server for a provider manages the data on the resources they
provided. A head-server for a PI only sees the data relevant to his/her project or
group. The data collected/managed by a head-server and stored in its database
depends on the size of the project/group or the resource provider’s environment, not
on the scale of the Grid. This decoupling strategy eases the scalability limitation
caused by database size and server load without requiring breakthrough technologies.
The flexible head-server architecture also enhances scalability, since servers can be
deployed as needed on a per-project, per-provider, or other basis. It is only necessary

34 M.L. Chen et al.

for a head-server to know which other servers to poll to obtain the desired resource
usage information. In the DOE laboratory environment, this is fairly straightforward,
since accounts and allocations are typically tracked and already known to the
providers/PIs.

4.2 Security

Significant efforts in Grid software development have gone into secure network
communications and remote interactions. The Globus Grid Security Infrastructure
(GSI) is based on existing standard protocols and APIs [5] and extends these
standards to single sign-on and delegation, forming a comprehensive security system
[10]. RUDA employs the Globus toolkit, and GSI in particular, to enable secure
authentication and communication over the open network. For instance, to collect data
from a remote basic-server, a head-server issues a GRAM command to call the basic-
server’s client-process remotely for data query. The Globus servers on both ends then
handle mutual authentication and secure remote communication for the RUDA
servers. During the data transfer procedure, GridFTP manages the mutual
authentication and insures the communication integrity. In this way, RUDA is based
upon standard Globus security features.

The authorization for data access is performed by the RUDA server in two layers.
One layer is applied to authorize a basic-server collecting data from the local system.
Each basic-server owns a user/project map provided by the local administrator
through a configuration file. The map lists the users and projects of which the data is
allowed for RUDA to access, and the server interface limits queries to the authorized
data only. The other layer is control of the access to the RUDA server’s database. The
database contains the user attributes originally obtained from the local system. When
a remote user queries for data, the server performs the data access control according
to the user status. For example, an ordinary user can only access his/her own data,
while a PI can access the data of their entire project/group.

4.3 Fault Tolerance

We have chosen a fail-over mechanism as a short-term solution to fault tolerance. We
run backup daemons on backup machines, which periodically probe the existence of
running daemons. A backup daemon of basic-server also keeps a copy of the current
resource usage data of the running daemon. Once a failure is detected, the backup
daemon can conclude that the original daemon or machine has died and inform the
other daemons that are interacting with the original daemon that it has taken over.
Simultaneously, the backup daemon informs the system administrators that the fail-
over has occurred. The backup daemon of a basic-server only provides the latest
accounting data upon request. The administrator is expected to troubleshoot and
recover the original server or machine as soon as receiving the failure information.

Although the above mechanism is easy to implement and sufficient for a small
group of RUDA daemons, it can not distinguish network partition from machine
failure, handle simultaneous failures of the original and backup daemons, or deal with

 The Design and Prototype of RUDA, a Distributed Grid Accounting System 35

 the complications in a large distributed environment. We have chosen the group
membership management mechanisms as the long-term approach to fault tolerance
[11, 12]. In such a system, the RUDA daemons will monitor one another and operate
self-healing mechanisms once they agree that a group member has failed.

4.4 Flexibility and Manageability

RUDA’s design includes interfaces that can be customized to communicate with local
accounting systems, allowing RUDA to support heterogeneous resources with various
local accounting systems with a minimum local impact. To avoid the complications
caused by the modification of Grid software infrastructure, RUDA software is built to
be essentially self-contained. The utilization of Grid infrastructure is limited to its
high level APIs and the modifications behind the APIs have no effect on RUDA.
Furthermore, the APIs are called in a couple of customization routines. By modifying
the customization routines, RUDA can utilize various versions of Globus or other
Grid infrastructures.

The RUDA server is fully configurable, such as its user/project map, data polling
period, data backup method, and so on, and supports runtime reconfiguration. By
means of GRAM and RUDA command line interfaces, the administrator can
configure and control the server remotely from any computer on the Grid.

5 Prototype Implementation

A prototype of RUDA has been developed on an SG testbed. It contains most of the
major components of RUDA to test the feasibility of RUDA design, but the fail-over
mechanism is not implemented due to lack of backup machines. The functions of
prototype’s client/server package are briefly described in the following.

The server chooses one of the three data collection interfaces (Fig. 2) according to
its configuration. The interface shown on the left side of Fig. 2 accepts RUDA
standard data files transferred between RUDA servers. The one in the middle is the
major data input port of basic-server. By means of the customized routine, the
interface inputs data from a local accounting system through CLIs/APIs provided by
the system, converts them into a standard data set, and loads the server’s data-cargo.
The interface on the right side is designed for situations where the additional security
requirements are imposed. To secure sensitive information, some sites do not allow
foreign access to the local systems and sensitive information must be filtered out
before resource usage data reach the Grid. This interface provides an independent
daemon process run by authorized site administrators. To periodically pull data from
the local system, the daemon calls a customized routine, which filters out the sensitive
information and coverts the local data into the standard data set. The daemon then
loads the data into its MySQL database, which RUDA server is authorized to access.
On receiving a new-data-ready signal from the daemon, the server reads in the data
from the daemon database.

36 M.L. Chen et al.

Upon receiving new data, the server core-software (Fig. 3) utilizes the customized
formula shown in Section 3.2 to calculate the charge of individual jobs, and
summarizes the usage data and charges from both current jobs and the jobs completed
within the accounting period for users, charge-accounts, and projects. The updated
current data are stored in server’s data structure and also copied into a local database
called mirror-site, which can be used to recover the current data in case the need
arises.

The client-process only communicates with the server through local socket
connections. The Globus toolkit GRAM is employed to run the client-process from a
computer on the Grid to perform remote communications with the server.

The prototype provides web interfaces for users to conveniently access their
resource usage data and for PIs to check resource availability and apply allocations.

Fig. 2. RUDA server block diagram part 1: Server interfaces

client-
process

Current RUDA data
mirror-site manager

RUDA data history
manager

 Server core functions and data management

Backup
procedure

Data
loading
process

Client query
manager Web

User

Secondary storage Database

Web
interface

Database

Socket
interface

Connected
with Fig.2
“Interface-
selection-
manager”

Fig. 3. RUDA server block diagram part 2: Server core-software

Connected with Fig.3
“Data-loading-process”

Interface selection manager

LAN/WAN

Interface of data
query routines

Customized
routine

Interface of daemon DB
data collection

from directly accessible
local system

Standard data-cargo

daemon
database

Independent daemon of
data collection

Customized routine

from other
RUDA servers

Standard data-cargo

Standard file manager

Interface of standard
data file collection

from not directly
accessible local system

 The Design and Prototype of RUDA, a Distributed Grid Accounting System 37

The command line interfaces are also provided for users query resource usage data,
and for administrators to configure and manage the server locally or remotely.

6 Experimental Results

The prototype system has been experimented on the Earth System Grid (ESG). The
ESG project uses Grid technology to support the climate research community to
discover, access, and analyze large-scale global climate model simulation results in a
distributed and heterogeneous computational environment. The RUDA prototype has
been deployed on ESG computer resources at ORNL in Tennessee and National
Center for Atmospheric Research in Colorado. The computer platforms include IBM
AIX, Sun Solaris, and Linux redhat, on which the RUDA software is portable. Globus
is the software infrastructure of ESG. GRAM and GridFtp of Globus Toolkit (version
2.2.4) with embedded GSI are enabled on these machines, and MySQL and Apache
web server are available.

A total of five basic-server daemons ran in this experiment on a mixture of IBM
AIX, Sun Solaris, and Redhat Linux systems, and a head-server daemon running on
an IBM AIX machine configured them as its members. The average number of
accounted jobs running simultaneously on each machine was at a level of a few tens
to a hundred at any moment, with a duration varying from a few minutes to several
days. Though a full set of standard resource usage fields had been defined in the
prototype, only CPU time, wall time, and the memory usage (requested or high-water-
mark) were captured in this experiment. Artificial weight factors (see section 3.2)
were assigned to simplify the process of checking accounting results.

The experiment first ran for four weeks and concentrated on checking server
functions. During this period, an error was reported by the head-server on data
transfer from one of its member servers and it was caused by the downtime of that
remote member computer. As mentioned, the fail-over mechanism has not been
implemented. When a member server is down, the head-server uses the latest data set
collected from that server as current data (with original data collection timestamp)
until the member server is up and running again. The memory and CPU usage of the
servers were also measured. According to the SG project’s survey of resource
providers and users, updating resource usage data and accounting records every hour
would fully satisfy the requirement of dynamic accounting. With this configuration,
the CPU time was less than 190 seconds per day for the head-server, and 10 seconds
for each basic-server, respectively. The memory usage (high-water-mark) of all
individual servers is less than 3 MB.

The experiment then continuously ran for 12 more weeks. All servers were
configured to collect data every 4 minutes for experimental purposes. The snapshots
of resource usage data and accounting results were taken and checked on a daily
basis. All servers ran smoothly through the whole period and no accounting error was
found. The RUDA web interfaces were used daily to monitor the system. The
allocation application functions were also tested through the web interface, though the
responses of administrators were performed automatically by a piece of simulation
software.

38 M.L. Chen et al.

7 Conclusion and Acknowledgement

A Grid Resource Usage Data management and Accounting system, RUDA, has been
designed for the DOE Science Grid project. A prototype RUDA system has been
implemented and tested to demonstrate the feasibility of the design. With more
customized data collection routines, RUDA can be deployed onto computers with
various local accounting systems and onto other types of resources such as mass
storage systems. We are planning to perform further experiments on a larger RUDA
system, with fault tolerance features implemented, in the near future.

We thank Scott Jackson and David Cowley at PNNL, the ORNL local accounting
system development group at ORNL and East Tennessee State University, and
Francesca Verdier at LBNL/NERSC for their support of our local accounting system
investigation. The support from ESG project on the RUDA experimental deployment
is also very much appreciated.

Science Grid project is sponsored by the U.S. DOE Office of Science under the
auspices of the Scientific Discovery through Advanced Computing program
(SciDAC). ORNL is managed by UT-Battelle, LLC for the U. S. Department of
Energy under Contract No. DE-AC05-00OR22725.

References

1. Foster, I. & Kesselman, C. Globus, “A Toolkit-Based Grid Architecture”, ibid, p. 278,
Morgan-Kaufmann (1999).

2. Bill Thigpen & Tom Hacker, “Distributed Accounting on the GRID”, Global Grid Forum
(GGF), 4-7 March 2001.

3. http://www.emsl.pnl.gov/docs/mscf/qbank
4. http://www.nersc.gov/nusers/accounts/nim
5. http://www-unix.globus.org/toolkit
6. Mi young Koo, “Usage Record Fields – Survey Results and Proposed Minimum Set”,

GGF Oct., 2002
7. http://www.gridforum.org
8. Laura F. McGinnis, “Resource Accounting – Current Practices”, GGF Feb., 2001.
9. Rajkumar Buyya, David Abramson, and Jonathan Giddy, “A Case for Economy Grid

Architecture for Service Oriented Grid Computing”, 10th Heterogeneous Computing
Workshop, Apr. 23-27, 2001

10. http://www.globus.org/security
11. M. Franceschiti and J. Bruck, “A Group Membership Algorithm with a Practical

Specification,” IEEE Transactions on Parallel and Distributed Systems, vol 12, no 11,
2001

12. K. Chanchio, A. Geist, M.L. Chen, “A Leader-based Group Membership Protocol for
Fault-tolerant Distributed Computing”, submitted to the 14th International Heterogeneous
Computing Workshop, 2005

	Introduction
	System Architecture
	Accounting Process
	Standard Resource Usage Records and Global User Identifications
	Usage Data Normalization and Accounting

	Feature Design Targets and Approaches
	Scalability
	Security
	Fault Tolerance
	Flexibility and Manageability

	Prototype Implementation
	Experimental Results
	Conclusion and Acknowledgement
	References

