

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3482, pp. 19 – 28, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Service Discovery Scheme Adapting to User
Behavior for Ubiquitous Computing1

Yeo Bong Yoon and Hee Yong Youn

School of Information and Communications Engineering,
Sungkyunkwan University, 440-746, Suwon, Korea

{yuny,youn}@ece.skku.ac.kr

Abstract. Discovering primary services requested by users is a very difficult
but crucial task in networked system, especially in ubiquitous computing sys-
tem. The service discovery also has to be an accurate, fast, and stable operation.
The typical lookup services such as SLP, Jini, and UPnP focus on either wired
networks or particular networks. In this paper, thus, we propose a new service
discovery algorithm using service agents adapted to user behavior. We compare
the proposed algorithm with the DEAPspace algorithm using real experiment. It
reveals that the proposed scheme offers services to the users seamlessly and ac-
curately as much as DEAPspace, while the number of packets used is about half
of it.

Keywords: Distributed service, service discovery, ubiquitous computing, user
behavior, and wireless network.

1 Introduction

Various computing and networking paradigms have been evolving continuously in the
past decades. Nowadays, the users no more need to adjust to the new computing sys-
tems because they were designed to learn the pattern of user behavior and adapt them-
selves to it. Ubiquitous computing system sets up quite efficient environment based
on the habits of users. There also exist numerous kinds of small devices such as cellu-
lar phone, notebook, mobile devices, and PDA which are being deployed radically in
the field nowadays. Advent of such mobile devices allows people to get any service in
any place. However, having mobile devices is not enough to construct efficient ubiq-
uitous computing environment. Here it is essential to provide the services not only
efficiently but also promptly.

The ubiquitous computing system requires systematic registration and management
of services for allowing seamless service in huge network environment. Furthermore,
small devices have to rely on battery to operate in all kinds of mobile networks.
Therefore, the key issue is how to offer stable and prompt services to the users using
small battery power. For this, the ubiquitous computing system has to employ energy-

1 This research was supported by the Ubiquitous Autonomic Computing and Network Project,

21st Century Frontier R&D Program in Korea and the Brain Korea 21 Project in 2004. Cor-
responding author: Hee Yong Youn.

20 Y.B. Yoon and H.Y. Youn

efficient, seamless, and user-adaptable service discovery technology. A variety of
services have been developed for users in mobile internet environment. Because of
this, service discovery technology becomes very important in mobile network.

There exist several solutions for the issue mentioned above, which have been pro-
posed and adopted in the real world. The Service Location Protocol (SLP) [1] is a
standard protocol which offers scalable framework automatically discovering re-
sources in the IP network. Lookup service was defined by Sun Microsystems to dis-
cover and manage services in Jini [2] middleware system based on CORBA [3]. Jini
Lookup Service provides mainly naming and trading service in the network. The
Service Discovery Protocol (SDP) [4] was addressed by Bluetooth Forum to compose
a Bluetooth piconet and user services. UPnP [5] of Microsoft defines an architecture
for pervasive peer-to-peer network connectivity in home network.

Service discoveries with SLP and Jini are very stable and powerful in terms of of-
fering services to the users. However, they do not focus on the mobile network and
their operations are restricted to low power mobile devices. In this paper, thus, we
propose a new service discovery algorithm using service agents adapted to user be-
havior. In the proposed algorithm each node has a number of requested services. Net-
work traffic is substantially reduced in the proposed scheme by keeping a list of ser-
vices maintained according to the frequency requested. If a service infrequently used
is requested, it is served by the on-demand model. The proposed algorithm keeps the
latest services which are frequently requested, and sends infrequently requested ser-
vice to reduce network traffic. We compare the proposed algorithm with the DEAP-
space algorithm [6-8] using real experiment. It reveals that the proposed scheme of-
fers services to the users seamlessly and accurately as much as DEAPspace, while the
number of packets used is about half of it. Note that reducing packet transmission is a
very important issue for small mobile devices of limited energy.

The rest of the paper is organized as follows. Section 2 briefly reviews the existing
discovery services. Section 3 proposes a new service discovery algorithm adapted to
user behavior. Section 4 presents the experiment results. Finally, we conclude the
paper in Section 5.

2 Related Works

Numerous approaches have been proposed to discover various services in a network.
Here we briefly review two systems among them, DEAPspace and Konark [9].
DEAPspace furnishes an algorithm that discovers services in a single hop adhoc net-
work, while Konark is a middleware offering service discovery in multi-hop adhoc
network. DEAPspace and Konark are the representative system in terms of perform-
ance and effectiveness for service discovery in single hop and multi-hop adhoc net-
work, respectively, and thus they are mostly adopted as references.

2.1 DEAPspace

IBM has developed DEAPspace that solves the problem of service discovery in wire-
less single-hop adhoc networks. It restricts itself to a small network by assuming a
single-hop adhoc network and broadcasting fit in a message. Its final proposal is for

A New Service Discovery Scheme Adapting to User Behavior for Ubiquitous Computing 21

fast concentration of available service information in the network. Maintenance of a
centralized node storing all the service information in the network is difficult and
complicated. DEAPspace thus selects a distributed approach with the push model in
which servers send unsolicited service advertisements to the clients.

In the DEAPSpace, each node has a world view which stores a list of all services
offered in the network. Furthermore, each node periodically broadcasts its own world
view to other nodes using the adaptive backoff mechanism. If a node receives a ser-
vice advertisement, it checks the service id and expiration time of its own world view,
and decides whether to advertise a service message or update the cache data. Thereaf-
ter, the node increases the rate of broadcasting. If new service advertisements offered
in the network have longer lifetime values than those in the internal cache of a node, it
adds them into its own internal cache [10,11].

2.2 Kornark

Konark is a middleware designed specifically for discovery and delivery of services
in multi-hop adhoc networks. It thus aims at wireless adhoc network that is usually
larger than the network DEAPspace supports. The Konark architecture mimics a typi-
cal operating system and it is programming language independent. It provides a
framework in which services are described and delivered using open standard XML
technology over IP network connectivity.

Konark supports both the push and pull model. When a node receives a service
message of the multicast address of the Konark, it multicasts different world view of
relevant services and other services contained in the received message. When a client
sends service requests, the servers replies unsolicited service advertisements. Each
node adopts Konark SDP Manager which is responsible for discovery of the requested
services, and registration and advertisement of its local services. To discover services
in the network, clients use a discovery process known as active pull mechanism. Each
node joins a locally-scoped multicast group.

The SDP Manager of each node maintains a cache, called a service registry. The
service registry is a structure that enables devices to store their local services. It also
allows them to maintain information on the services that they might have discovered
or received via advertisements.

3 The Proposed Scheme

In general, if a server frequently advertises the service list, the clients can quickly
discover the requested service. Here discovery service must not take too much traffic
while offering services in a timely fashion. The two conflicting goals, less traffic and
fast response, should be well balanced when the services are available to use. In addi-
tion to satisfying these goals, a service discovery which is also user-adaptable is pro-
posed.

3.1 The Overview

For ubiquitous computing it will be efficient to use service discovery for both the
server and client such as Jini lookup service. The lookup service is located in the

22 Y.B. Yoon and H.Y. Youn

middle of the clients to manage the requested services. This kind of service discovery
approach based on agent system can provide fast, efficient, and seamless services to
the one needing them. However, the server and client system can be effective only in
the networked environment. Mobile devices are not fixed at specific locations inside
the mobile network. This is one of the reasons that a server system is not set in mobile
network. Mobile devices need to frequently send a broadcast message to get service
information with respect to service location, service time, and so on. They have their
own repository to keep the latest service information.

Note that most people want to repeatedly use only some specific services from the
network. They are just interested in the services which are related to their job or
hobby. It is thus better to offer an efficient service mechanism only for a confined set
of services instead of inefficient wide spectrum of diverse services. If a user is not
interested in a specific service the user may demand it infrequently or never does that.

The basic idea of the proposed scheme is to substantially reduce the traffic due to
infrequently requested services as identified above. Providing service list adapted to
user behavior and preference will significantly reduce network traffic and offer fast
services. The proposed scheme employs an approach in which each device broadcasts
such adapted service list for the distributed system. Moreover, when a user wants to
use services, the user sends a request message like an on-demand service model for
reducing network traffic.

3.2 The Flow of Operation

Figure 1 shows how the proposed service discovery operation works, which consists
of the following three steps for example.

Step 1. If Node-2 needs a service, it checks the service cache in its own repository.
Step 2. If the service is not in the service cache, it sends a request to other devices.
Step 3. If other devices have the service requested by Node-2, the device broadcasts

the service list to other devices.

In the proposed scheme each node has a service cache (SC) storing the adaptable
service list. Figure 2 shows the SC consisting of service elements (SE). Each SE has
three fields; Service ID, Expiry, and Hit. Service ID is used to distinguish the service
and Expiry indicates how long the service can be used by the users. Hit indicates how
many times the user requested the service. When a user requests a service, its Hit
value is increased by 3 points.

Each Hit value is decreased by 1 point if not requested in every 20 minutes. As a
result, the Hit value of frequently requested service can maintain relatively higher Hit
value than that of uninterested services decreasing continuously. All the SEs in the SC
are sorted by the Hit value. We assume that ten most frequently requested service
elements in the SC belong to a set of special interests, while others are plain service
elements probably unrelated to the users. The ten SEs are called ‘hot elements’, and
the number of hot elements can be varied for each specific implementation.

The hot elements are kept in the latest service list of the SC, and the message con-
taining them is broadcast more frequently than other messages to reduce network
traffic.

A New Service Discovery Scheme Adapting to User Behavior for Ubiquitous Computing 23

Service ID Exp iry Hit

SERVICE B 98 25

SERVICE C 93 23

…… …

SERVICE A 45 1

Service ID Exp iry Hit

SERVICE D 96 27

SERVICE A 100 25

…… …

SERVICE Z 50 1

Service ID Exp iry Hit

SERVICE C 93 24

SERVICE A 95 21

…… …

SERVICE Z 50 1

Service Cache

Service Cache Service Cache

Node 1 Node 2

Node 3 Node 4

1

2

3

Service ID Exp iry Hit

SERVICE A 100 29

SERVICE B 90 25

…… …

SERVICE Q 10 1

Service Cache

Fig. 1. The operation flow in the proposed scheme

SERVICE E 98 20

SERVICE C 45 18

SERVICE R 30 15

………

SERVICE Z 78 2

Service Cache

Service ID Expiry Hit

SERVICE D 98 30

SERVICE A 50 25

SERVICE ELEMENT

[SE]

Hot Element

[Limited]

Basic Element

[Unlimited]

………

Fig. 2. The structure of service cache

3.3 Algorithm

The proposed algorithm consists of three main functions; Local Service Function,
Receive Element Function, and Receive Service Function. Figure 3 shows a pseudo
code of Local Service Function checking whether the requesting service is in the SC
or not. Figure 4 shows how Receive Element Function works when a device receives
a message requesting a specific service from it. Finally, Receive Service Function,
defined in Figure 5, settles other’s SC receiving a message from a remote node.

24 Y.B. Yoon and H.Y. Youn

3.3.1 Local Service Function
Line 3: When a user requests a particular service, the hit count of the SE is increased.
Line 4: The SC is sorted by the hit counts of the SEs to maintain the latest data re-

flecting the usage.
Line 5: Local Service Function checks if the requested service exists in the SC. In

Figures 3, MINE in line 3 is its own SC.
Line 7: Check_expiry function has two kinds of operations. If the requested service

id belongs to hot elements, check_function checks the expiration time of all
the hot elements. When the requested service element is just a basic element,
check_function checks the expiration time of just the service element.

Line 9: If the hot element and requested service have a smaller value than minimum
value of expiration time, local service function broadcasts a query message.
One of the user’s favorite services or just requested service will soon be shut
down.

Line 14: If the own SC does not have the service element, Local Service Function also
broadcasts the query message.

1 LOCAL SERVICE (SE d.ID)
2 {
3 Increase (MINE.d.HIT)
4 Sort (MINE)
5 IF (d.ID ∈ MINE.ID)
6 {
7 IF (Check_expiry())
8 {
9 BROADCAST ELEMENT(d.ID)
10 }
11 }
12 ELSE
13 {
14 BROADCAST ELEMENT (d.ID)
15 }
16 }

Fig. 3. The pseudo-code of the Local Service Function

3.3.2 Receive Element Function
When a node receives a broadcast message, the Receive Element Function checks
whether the SE is in its own SC or not. If it exists in its own SC and the expiration
time is greater than the minimum value, the Receive Element Function broadcasts all
the SEs in the SC. It is unnecessary for a node to request the SE even though the node
does not have the SE. This is because the node will receive the SE from other nodes
sooner or later through the Receive Service Function message. Note that the service
lists are synchronized through the distributed service in the network.

A New Service Discovery Scheme Adapting to User Behavior for Ubiquitous Computing 25

1 RECEIVE ELEMENT (c.ID)
2 {
3 IF (c.ID ∈ MINE.ID)
4 {
5 IF(MINE.ID.EXPIRY > MIN)
6 {
7 BROADCAST SERVICE (MINE)
8 }
9 }
10 }

Fig. 4. The pseudo-code of the Receive Element Function

3.3.3 Receive Service Function
Line 4-7: When a node receives a new SE from a remote node, the node inserts that

in its own SC. The service is stored at bottom of the SC.
Line 10-11: If the SE is already in the SC, it checks the expiry time. If the received

SE has the latest date, the Receive Service Function updates the expiry
time of it.

1 RECEIVE SERVICE (REMOTE)
2 {
3 For each r � REMOTE
4 IF (r � MINE)
5 {
6 Insert(r, MINE)
7 }
8 ELSE
9 {
10 IF(r.expiry > MINE.expiry)
11 { Update(r, MINE) }
12 }
13 }

Fig. 5. The pseudo-code of the Receive Service Function

4 Performance Evaluation

This section describes the experiment environment and the results of experiment.

4.1 Experiment Environment

In our experiment we use four 2.4GHz Pentium IV machines with 1GB of main
memory each. We assumed the number of services in a network is 50, and each ser-

26 Y.B. Yoon and H.Y. Youn

vice has a random expiration time from 1 to 100. Expiration time is decremented in
every two minutes. Also, every service updates its own expiry time to a random num-
ber between 50 and 100 in every twenty minutes. Each node has 30 service elements
at the starting point. When we set the value of time-out as 3’00’’, the average time-out
with the DEAPspace algorithm turned out to be 4’25’’. Thus, we set a random time
value between 2’00’’ and 4’00’’ as the time a user requests a service in the experi-
ment with the proposed algorithm.

4.2 Experiment Result

Figure 6 shows the average expiry time value of the proposed scheme and DEAP-
space. We can see that the difference between the two is very small, which means that
the proposed scheme offers seamless and accurate service to the users as much as
DEAPspace does. Notice that each peak point in the plots represents service update
time in every twenty minutes as we preset.

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50 55 60

Time (Min)

A
v
e
ra
g
e
 E
x
p
ir
y
 V
a
lu
e

 (
(

DEAP

Proposed

Fig. 6. Comparison of average expiration time.

Figure 7 shows the amount of packets transmitted in every ten minutes. Recall that
when a user requests a service belonging to uninterested service elements (non-hot
elements), the proposed scheme broadcasts a query message to get the information of
others. Proposed-1 is the case that services in the SC are requested equally likely.
Meanwhile, Proposed-2 is the case that user requests some service elements more
frequently than the others. When this happens, the Local Service Function checks the
expiration time of the hot elements. If one of the hot elements has a minimum expira-
tion time, the node broadcasts a query message until it gets the latest data of the
service at every request time. As a result, Proposed-2 uses more packets than

A New Service Discovery Scheme Adapting to User Behavior for Ubiquitous Computing 27

Proposed-1. Notice from Figure 6 that Proposed-1 and Proposed-2 use fewer packets
than DEAPspace. Also, notice from the figure that the amount of packets of the pro-
posed scheme and DEAPspace linearly increases as time passes. In other words, the
average number of packets transmitted per minute is about 300 and 600 for the pro-
posed scheme and DEAPspace, respectively. The proposed scheme uses about half of
the packets used by DEAPspace, which is a quite substantial reduction.

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100 110 120

Time (Min)

A
m
o
u
n
t
o
f
T
o
ta
l
P
a
c
k
e
ts

 (
(

DEAP

Proposed- 1

Proposed- 2

Fig. . Comparison of total number of packets transmitted

5 Conclusion

We have addressed a new computing paradigm in which the users demand individual
service. The ubiquitous system requires registration and management of systematic
control of services for each user in mobile network. For this reason, service discovery
technology becomes very important in mobile network. We have also reviewed some
present solutions such as Jini, SLP, SDP, and UPnP with more attention to DEAP-
space and Konark. Most of the present service discoveries are focusing on networked
system or particular network such as Bluetooth or Piconet.

In this paper we have proposed an energy-efficient service discovery algorithm us-
ing a list of services adapted to the frequency of requests. Comparing with DEAP-
space, we have shown that the proposed scheme allows the same service quality using
much less network traffic. Experiment with four machines displayed that the proposed
scheme uses about half of the amount of packets used by DEAPspace. We will ex-

7

28 Y.B. Yoon and H.Y. Youn

pand the experiment considering various factors such as the type of the services re-
quested and duration of usage.

When a hot service element cannot be offered to a user, several packets need to be
transmitted to get the service information. We will carry out research to get over the
problem using effective service registration.

 References

[1] SUN Microsystems: Jini Architecture Specification, Version 1.2.
http://wwws.sun.com/software/jini/specs/jini1.2html/jini-title.html (2001)

[2] Guttman, E.: Service location protocol. Automatic discovery of IP network services. in
Internet Computing, IEEE (1999) Volume 3, Issue 4, 71-80

[3] Object Management Group: The Common Object Request Broker Architecture. Core
Specification, Version 3.0.3, Editorial changes formal/04-03-12 (2004)

[4] Bluetooth, Specification of the Bluetooth System, Specification Volume 1, 2001,
Specification Volume 2, 2001. http://www.bluetooth.com

[5] UPnP FORUM, Universal Plug and Play Device Architecture Version 1.0.1,
http://www.upnp.org, 2003

[6] M. Nidd : Service Discovery in DEAPspace, IEEE Personal Communications, August
2001.

[7] R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, A. Schade : DEAPspace -
Transient Ad-Hoc Networking of Pervasive Devices, Computer Networks, vol. 35, pp.
411-428, 2001.

[8] M. Nidd, “Timeliness of Service Discovery in DEAPspace,” 29th Int’l. Conf. Parallel-
Processing,” 29th Int’l. Conf. Parallel Proc. Workshop. Pervasive Comp., Aug. 2000, pp.
73–80.

[9] S. Helal, N. Desai, V. Verma, C. Lee : Konark - A Service Discovery and Delivery Pro-
tocol for Ad-hoc Networks, Proceedings of the Third IEEE Conference on Wireless
Communication Networks (WCNC), New Orleans, March 2003.

[10] Honghui Luo, Michel Barbeau : Performance Evaluation of Service Discovery Strategies
in Ad Hoc Networks, 2nd Annual Conference on Communication Networks and Ser-
vices Research (CNSR 2004) Fredericton, N.B., Canada, May 19-21, 2004

[11] M. Barbeau, E. Kranakis, Modeling and Performance Analysis of Service Discovery
Strategies in Ad Hoc Networks, Proceedings of International Conference on Wireless
Networks (ICWN), Las Vegas, Nevada, 2003.

	Introduction
	Related Works
	DEAPspace
	Kornark

	The Proposed Scheme
	The Overview
	The Flow of Operation
	Algorithm

	Performance Evaluation
	Experiment Environment
	Experiment Result

	Conclusion
	References

