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Abstract. Modern conservation management needs to link biological questions 
with computational approaches. As a global template, here we present such an 
approach from a local study on sage grouse breeding habitat, leks, in North Na-
trona County, Wyoming, using remote sensing imagery, digital datasets, spatial 
statistics, predictive modelling and a Geographic Information System (GIS). 
Four quantitative models that describe sage grouse breeding habitat selection 
were developed for multiple scales using logistic regression and multivariate 
adaptive regression splines (MARS-Salford Systems). Based on candidate mod-
els and AIC, important habitat predictor variables were elevation, distance to 
human development, slope, distance to roads, NDVI and distance to water, but 
not Sagebrush. Some predictors changed when using different scales and 
MARS. For the year 2011, a cumulative prediction index approach is presented 
on how the population viability of sage grouse can be assessed over time and 
space using Markov chain models for deriving future landscape scenarios and 
MARS for species predictions. 

1   Introduction 

Complex computations and advanced statistics play an important role for our daily 
lives. Biodiversity and habitats contribute to human well-being, but as well to eco-
nomics and wealth [1]. Often, it is not clear to the general public that these complex 
subjects are linked, and how computing, quantitative methods, biodiversity and habi-
tat data sets, biology and geography are connected towards a sustainable future [2], 
[3], [4]. We use the sage grouse (Centrocerus urophasianius) – a species of North 
American conservation concern - as an example how these research disciplines, with 
each method used here being at the forefront of the individual research discipline, can 
get merged at a local scale. As an outlook we show how such an approach can get 
applied globally. We believe that the methods presented here are of relevance to 
global management issues of biodiversity, wildlife and habitats, as well as to the well-
being of humans. 
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2   Methods 

Making informed decisions on the conservation of sage grouse requires the full un-
derstanding of its life history characteristics, preferences, limiting factors as well as 
its dependence on sagebrush vegetation. It also requires an evidence and an under-
standing of its habitat selection patterns and any observed underlying processes. This 
will aid in the identification and modelling of its habitats and how landscape change 
can affect this species with the goal of providing adequate and timely information for 
the species management. Approximately 736,000 km2 of sagebrush vegetation types 
existed in North America [5], making it one of the most widespread habitats in North 
America. Unfortunately, much of this habitat has been lost or degraded over the last 
100 years [6].  

2.1   Biology Data 

Sage grouse is an endangered species in North America. It can be found in sage (Ar-
temisia spp) habitat, which usually is rangeland used by cattle but which can be in-
creasingly diminished through other land uses such as real estate, industrial activities 
and road construction. Sage grouse mate at lek sites, which are crucial habitats for 
their reproduction; nests are usually found related to lek sites [7],[8],[9], [10]. For the 
study area, yearly lek site surveys were carried out during the years 1979-2001, result-
ing into a maximum of 11 detected and subsequently geo-referenced leks. 

2.2   Remote Sensing and Other Habitat Data  

A Landsat TM image was obtained 1985 for the study area. A second image, ETM+ 
Landsat 7, was obtained for summer July 2001. This image was processed and classi-
fied using approaches described in [11], [12], and resulting into an overall accuracy of 
85%. Computations for deriving NDVI and Greenness were applied. Other data such 
as DEM (including derived slope and aspect), roads and water features were also 
available to the project (see [11] for earlier work). 

2.3   Spatial Statistical Analysis 

All data were imported into the Geographic Information System (GIS) ArcView 3.3. 
and ArcGIS 8.2 for further processing and analysis.  
Dynamic population level processes with spatial characteristics can create patterns 
relating locational attributes to them. These spatial patterns are the result of underly-
ing processes and these processes can be described, measured, and evaluated using 
various spatial descriptive statistical methods. The observed patterns can then be 
related back to the ecology of the phenomenon in question and be used for predictive 
purposes.Point pattern analysis and spatial autocorrelation [13],[14],[15], were used to 
explore the distribution of observed sage grouse breeding habitats in North Natrona 
County, Wyoming. We examined if an underlying pattern exists in sage grouse breed-
ing habitats. 

The nearest neighbourhood index was estimated for describing the sage grouse 
breeding habitat patterns using a nearest neighbourhood index script in the Arcview 
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3.2 wGIS software. The analysis is based on the calculated average of all distances 
between each pair of points representing sage grouse breeding habitats using Pythago-
ras theorem. For the purposes of comparison, the calculated average nearest 
neighbourhood distance is compared to an expected average distance between nearest 
neighbours. The expected average distance between nearest neighbours is standard-
ised to account for area coverage in a random point pattern. 
    According to [14] autocorrelation is a general statistical property of ecological 
variations observed across geographic space. [15] define spatial autocorrelation to 
measure the degree to which a spatial phenomenon is correlated to itself. Moran I and 
Geary’s C indices are types of spatial autocorrelation measures. Moran’s I represents 
the overall agglomerative patterns (i.e. are events clumped or dispersed ?) whereas 
Geary’s C explains the similarity or dissimilarity of events [14]. The spatial autocor-
relation of sage grouse breeding habitats was estimated using the above-mentioned 
metrics provided by the S-PLUS extension in the Arcview 3.2 GIS software. 

2.4   Modeling Habitat Relationships 

Based on known lek sites, we created ‘presence/absence’ locations. Following estab-
lished methodology this was done using pseudo-absences, random locations. As out-
lined in [2] first we used Generalized Linear Models (GLM) to build a model 
[16],[17]. For predictors we choose Land use, Distance to water, Distance to roads, 
Distance to human development, NDVI, Greenness, Elevation, Slope and Aspect. 

Model selection was done with a set of 83 candidate models and AIC; this method 
follows [18], [19] and was based on a modified S-PLUS code by [20].  

Non-linear models are powerful inference and prediction tools. They provide great 
alternatives, and often improvements, when compared with GLMs. We decided to use 
the MARS-Salford (Multivariate Adaptive Regression Splines) algorithm due its 
speed, convenience and general accuracy [21]; similar algorithms such as Cart (Clas-
sification and Regression Trees), Neural Networks and TreeNet could also have been 
used [22], [23], [24].  

We build models on two scales since it is known that the scale of study can affect 
the inference [25] and prediction. We choose the point scale, as well as the home 
range scale for each lek site in order to assess the scale effects. Home range size was 
determined from the literature and centered on lek sites. 

2.5   Future Landscapes and Sage Grouse Predictions 

Using the Markov [26], [27], [28] module in the IDRISI 32 software, multiple itera-
tions were run on land use maps classified from Landsat 1985 and Landsat 2001 im-
ageries in order to predict land cover changes for the next ten years, 2011 (see also 
[29] for other approaches to obtain cumulative effects landscape scenarios of the 
future). From the predicted distribution map of lek sites 2001 we computed a cumula-
tive prediction index of lek site occurrence in the study area. This cumulative index 
for the study area was equaled with the number of known breeding sites. We used 
MARS since it allows for a convenient, fast and reliable modeling of the future distri-
bution of sage grouse. Using the future landscape of 2011 as input into the 2001 
MARS model, we then predicted lek sites spatially. Finally, we computed the cumula-
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tive prediction index for 2011, as an indicator of how many breeding sites would exist 
in the future in the study area for the future landscape. 

3   Results 

3.1   Landuse Classification 

Figure 1 shows a reclassified result of a hierarchical image classification approach. 
Overall, thirty seven vegetation and land use classes exist. The results of the reclassi-
fication with 11 classes were used for simplicity in the following model development.  

3.2   Spatial Patterns 

The results of the nearest neighbourhood and quadrat analysis, Geary’s C and 
Moran’s I indices indicate that the location of sage grouse breeding habitat followed 
distinct patterns. Thus, sage grouse does not seem to select the location of its breeding 
habitat randomly, but certain characteristics that are favourable to its breeding habitat 
are considered at every location. The results of the exploratory process set the stage 
for further analysis using other statistical techniques for modelling and predicting the 
state of its present and future habitats.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Landcover classification from using 11 vegetation classes [7] 
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3.3   Spatial Prediction 

For the GLMs, from the 83 candidate models we identified a final model which was 
within 5 +AIC units. This was done for two scales, lek site and home ranges. Based 
on expert knowledge, we identified the homerange model as more accurate due to 
better predictive accuracies and higher variances explained.  Model coefficients are 
presented in Equation 1. 

ln(1/1-p)= -3.70503- 0.56858 (Slope) + 0.00007 (Dist. from Human development) 
+ 0.0030287 (Elevation)+ 0.0000101 (Dist. to water) -0.000901 (Dist. to Roads)- 
4.96345 (NDVI)            Equation 1 

When using MARS on the home range scale, only three predictors are selected 
(Table 1). However, it should be remembered that same as with the GLM, these im-
portance values are driven by the characteristics of the algorithm and GIS, but not 
necessarily  by the true biological needs of the sage grouse [2]. 

Table 1. Importance of predictor variables in MARS (Home range scale) 

Variable 
Cost of

Omission
Importance Scale of Importance 

Slope 0.078 100.000 ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Distance to Human Develop. 0.077 82.111 ||||||||||||||||||||||||||||||||||||||||||||| 
Distance to Roads 0.074 37.210 |||||||||||||||||||| 
Distance to water 0.074 0.000  
NDVI 0.074 0.000  
Vegetation Classes 0.074 0.000  
Greenness 0.074 0.000  
Elevation 0.074 0.000  
Aspect  0.074 0.000  

Sagebrush vegetation has been reported to be prominent in the life of the sage 
grouse. However, the results of the most appropriate model developed for predicting 
sage grouse breeding habitats using logistic regression as well as MARS and on mul-
tiple scales show that sage brush vegetation as such is not the only and key predictor 
variable that determined the location of sage grouse breeding habitats in North Na-
trona County. Terrain characteristics, proximity to sources of water, roads and human 
development play prominent roles in determining the occurrence of sage grouse 
breeding habitats in the area. This provides new insights into habitat features relevant 
for lek sites, and likely for related nest sites. NDVI, which describes the richness and 
vigour of the vegetation, was the only predictor variable in the model on multiple 
scales from logistic regression that gave information about the characteristics of the 
vegetation cover. Candidate models developed with logistic regression where sage-
brush vegetation played a role as a predictor variable ranked between the 10th and 20th 
models across scales. This suggests that other identified habitat predictor variables 
should be more important in predicting the species habitat in North Natrona or other 
areas where sage brush is the major land cover type. 
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Applying the above home range formula with MARS for a prediction of lek sites to 
the overall study area for the year 2001 indicates that 28 of these breeding sites would 
exist. 

3.4   Landcover Change and Future Scenario 

Figure 2 represents the future distribution of lek sites in the landscape of North Na-
trona County, Wyoming, for the year 2011, based on the combined Cellular automata 
/ Markov chain land cover prediction procedure. The results indicate a more frag-
mented landscape scenario for 2011, and the extent and distribution of sagebrush and 
herbaceous rangeland vegetation is lower as opposed to human development (table 2; 
map not shown here). Without ground-truthing information, the reliability of this 
classification cannot be statistically ascertained but likely presents the general trend.  

Fig. 2. Predicted future distribution of sage grouse lek sites for 2011 
 
For the year 2011 a viability of the sage grouse population was estimated (compare 

[30]). Results suggest that an increase in the cumulative predicted probability index 
was experienced between 2001 (28 predicted lek sites) and 2011, increasing from 
73.79 to 79.47. At a cumulative predicted index value of 79.47, an estimated value of 
30 sage grouse breeding sites can be supported. However, the spatial distribution of 
these predicted sites in Figure 2 shows that they are mostly concentrated in the central 
portion of the study area, which coincides with predicted vegetation types such as 
sagebrush and rangelands reported to be favoured by sage grouse. Such a distribution 
might facilitate contact among individuals but also increases competition; it can pose 
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the threat that all relevant areas are concentrated into one single area making popula-
tions vulnerable if this one habitat would be majorly disturbed.  
 

Table 2. Changes in the Class Area Landscape Metric of Vegetation and Land Use Classes 
from 2001 to 2011 

Vegetation and Land 
Use Classes 

Class Area (2001) 
(ha) 

 

Class Area (2011) 
(ha) 

 

Change 
(ha) 

 

Roads 20522.97 23719.05 3196.08 
Grasslands 115747.1 68422.86 -47324.3 
Conifers 6773.31 29805.75 23032.44 
Deciduous 4166.28 18944.55 14778.27 
Herbaceous Rangelands 40155.57 25304.13 -14851.4 
Water 399.42 36790.65 36391.23 
Human Development 6234.21 32495.4 26261.19 
Agriculture 2495.25 8562.87 6067.62 
Sage brush 148235 100193.58 -48041.5 
Riparian 17374.14 22941.36 5567.22 
Bare surfaces 42060.78 36994.95 -5065.83 
 

4   Discussion 

Assessing biodiversity components and carrying out progressive and pro-active con-
servation research and management can require intensive digital data preparation and 
computationally demanding applications. Usually, this is done with the extensive use 
of modeling and statistical soft- and hardware and advanced (spatial) datasets; see 
[31], [32],[33] for change detection modeling and [29] for a future Landscape exam-
ple. Much more multidisciplinary expertise and international projects are needed to 
address issues relevant for sustainable landscape management on larger scale. This 
localized project and its methodology can be applied on a larger, continental and 
global scale, as well as with other species. It is made possible through the advent of 
large scale data (Sagemap USGS website: http://sagemap.wr.usgs.gov.htm, Wyoming 
State clearing house: http://www.wygisc.uwyo.edu/clearinghouse/county.html) as 
well as through global data sets such as Landcover and Human Populations (SAGE 
and HYDE [34]), Climate Data (CRU[ 35]), Digital Elevation (etopo2 [36]), and 
others. These global aspects to species and biodiversity modeling should be enforced 
much stronger. First approaches are coming forward for the globe as well as for 
world-wide marine and terrestrial applications (e.g. Neubauer and Huettmann unpub-
lished, Meyer and Huettmann unpublished). 

It is well known that habitats are modified, transferred and lost globally at an in-
creasing rate [37]. For the study area, table 2 shows that roads, conifers, deciduous, 
human development, agriculture, riparian cover classes, which are not favorable for 
the preservation of sage grouse breeding habitats, increased. This trend is in contrast 
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to herbaceous rangelands, grasslands, sagebrush and bare surface classes which sage 
grouse is more associated with and favorable to the species [38].  

The presented methods are affected by error propagation and accuracy issues [39]. 
In this study, the classification result from the Landsat 1985 image could not statisti-
cally get assessed for accuracy and reliability. Secondly, the Markov chain model 
used in predicting future land use scenario is based on a large assumption that the rate 
and type of change in a land use at a given time will be the same for another time 
period [26], [27]. Also, the reliability of spatial models developed using logistic re-
gression and MARS have not been statistically ground-truthed and its use and success 
in predicting sage grouse breeding habitats has not been quantified. Unfortunately, 
future models cannot be ground-truthed with real data neither since still in the future. 
More research is needed to overcome these problems across scales, but the overall 
methodology is established now and gets further developed [29]. We think the future 
will see an increased use of wildlife habitat resources, but also the data availability 
and computer power will increase making methods like the ones presented here more 
feasible providing opportunities for decisions support systems on a large and global 
scale (see for instance [40]). We suggest to further emphasize these biology-based 
computer models, their data and applications in governments, for environmental im-
pact studies and in policy towards a sustainable future of the globe (for more details 
on Biodiversity Informatics see also http://jbi.nhm.ku.edu/viewissue.php?id=2004]. 
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