

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 57 – 66, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Variability Design and Customization Mechanisms
for COTS Components∗

Soo Dong Kim, Hyun Gi Min, and Sung Yul Rhew

Department of Computer Science,
Soongsil University,

1-1 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
{sdkim, syrhew}@comp.ssu.ac.kr, hgmin@otlab.ssu.ac.kr

Abstract. Component-Based Development (CBD) is gaining popularity as an
effective reuse technology. Components in CBD are mainly for inter-
organizational reuse, rather than intra-organizational reuse [1]. One of the
common forms of reusing commercial-off-the-shelf (COTS) components is to
acquire and customize them for each application. Therefore, components must
be developed with consideration of commonality and variability in a domain in
order to increase the reusability and applicability [2]. One effective factor in
determining the quality of components is how precisely the variability is
modeled and how effective customization mechanisms are provided. COTS
components often come in binary and blackbox form, therefore modifying the
source code or re-linking object code with library are forbidden. However,
much of current approaches to component customization are directed towards
tailoring whitebox components, i.e. source code is modified. In this paper, we
present a comprehensive set of techniques to realize variability into blackbox
components and to provide effective interface-based customization
mechanisms. Maintanbility, applicability and reusability can be enhanced
by using the mechanism.

1 Introduction

CBD is gaining popularity in both industry and academia as an effective reuse
technology. Components in CBD are mainly for inter-organizational reuse, rather than
intra-organizational reuse. One of the common forms of reusing COTS components is
to acquire and customize them for each application. Therefore, components must be
developed with consideration of commonality and variability in a domain in order to
increase the reusability and applicability. One effective factor in determining the
quality of components is how precisely the variability is modeled and how effective
the customization mechanisms are.

COTS components often come in binary and blackbox form to minimize the
coupling between components and applications and to protect intellectual design
assets. For blackbox components, modifying the source code or re-linking object code
with library are forbidden. However, much of current approaches to component

∗ This work was supported by Korea Research Foundation Grant. (KRF-2004-005-D00172).

58 S.D. Kim, H.G. Min, and S.Y. Rhew

customization are directed towards tailoring whitebox components. Tailoring
whitebox components involves understanding the internal design of the component,
modifying source code, and rebuilding the component with any necessary library.
While tailoring whitebox component is more effort and time consuming, tailoring
blackbox component only involves invoking the customization interface to set
appropriate variants and so it is more efficient and less time consuming.

However, it is challenging to be able to customize blackbox components without
accessing their internal design and source code. In this paper, we present a
comprehensive set of techniques to design components with variability so that
blackbox form of components can be customized effectively only through interfaces.
We focus on practical applicability of customization techniques which can be
implemented in popular CBD platforms.

We survey representative works on variability design in section 2, and present a
foundation on variability types and interfaces. The main customization techniques
proposed are presented in section 4, 5 and 6. The proposed work is compared with
other works in section 7.

2 Related Work

In this section, we present a survey of representative customization methods for
whitebox and blackbox components.

Keepence and Mannion’s Work suggests three patterns for variability design;
single adapter, multiple adapter and options patterns [3] as in figure 1. In single
adapter, generic features are modeled in a base class and specific features are
modeled in subclasses. Only one subclass can be instantiated in any single system.
Multiple adapters are similar to single adapter, but more than one subclass can be
instantiated in any single system. In options pattern, two associated peer classes are
created to realize a variation. Keepence’s work suggests three types of variability
mechanism. However, this research specifies range of variant. It doesn’t include
detailed implementation techniques.

Base Class

operation A
operation B(virtual)

SubClass

operation B

SubClass

operation B
Instance

! ! !

Base Class

Collection
Instance

SubClassSubClass

Collection

! ! !

InstanceInstance

Class B

operation
operation

Class A

operation
operation

1 0..
1

(a) A Single Adapter Patter (b) Multiple Adapter Pattern (c) Option Pattern

Fig. 1. Keepence’s Patterns for Variability

Anastasopoulos and Gacek’s Work identifies several customization methods;
aggregation/delegation, AOP, conditional compilation, dynamic class loading,
dynamic link libraries(DLL’s), frames, inheritance, overloading, parameterization,
properties and static libraries [4]. Aggregation/delegation method enables objects to

 Variability Design and Customization Mechanisms for COTS Components 59

delegate requests to other objects which provide a customized behavior. Conditional
compilation method enables control over the multiple code segments; including or
excluding selected code segment from a program compilation. Dynamic class loading
is a feature in Java where all classes are loaded into memory as soon as they are
needed at runtime. Frame is used to specify adaptable behavior. Parameterization is
used to pass variants. Static library contains a set of external functions that can be
linked to an application after it has been compiled. Among the proposed techniques,
only aggregation/delegation, dynamic link library and parameterization methods can
be effectively applied to blackbox components.

Svahnberg and Bosch’s Work suggests five customization techniques;
inheritance, extensions, parameterizations, configuration and generation of derived
components [5]. Extensions mechanism is used when parts of a component can be
extended with additional behavior, selected from a set of variations. Configuration
enables selection of source code segment and files from a code repository to form a
customized product. Generation of derived components is hard coded to a particular
set of parameters. However, inheritance and generation methods cannot be used for
customizing blackbox component.

3 Foundation

In this section, we summarize fundamental concepts and terms used for presenting our
methods. We first define terms related to variability; Variation Point (VP), Variant,
and Variability. Variation Point is a place in software where a minor difference
occurs among family members [6]. It is possible for a function to have more than one
variation point. Variant is a value or instance that can validly fill in variation points,
i.e. a variant resolves a variation point. A variation point typically has more than one
variant. Variability is characterized by various variations within common
requirement, and it consists of variation points and a set of their valid variants.
Therefore, variability is a comprehensive description of variations occurring in a
family.

There are four types of variability in CBD; variability on Attribute, Logic,
Workflow, or Persistence [6]. Attribute is defined as an abstract storage to store
values, and it is realized as constants, variables, or data structures. Attribute
variability denotes occurrences of variation points on attributes. The typical forms of
variations are the different number and/or data types of attributes for a given function.
Logic describes an algorithm or a procedural flow of a relatively fine-grained
function. Logic variability denotes occurrences of variation points on the algorithm or
logical procedure. Workflow describes a sequence of method invocations to carry out
a coarse-grained function. Workflow variability denotes occurrences of variation
points on the sequence of method invocations. Persistency is maintained by storing
attribute values of a component in a permanent storage so that the state of the
component can alive over system sessions. Typically a component contains several
classes, and classes contain persistent attributes. These attributes must be mapped to a
representation on a secondary storage such as files on hard disk and relational
database tables. Persistency variability denotes occurrences of variation points on the
physical schema or representation of the persistent attributes on a secondary storage.

60 S.D. Kim, H.G. Min, and S.Y. Rhew

4 Selection Technique

The selection technique is to define classes and an customize interface for clients to
select one of the variants realized inside the components. Once a variant is selected,
the value is stored and remembered so that further invocations can refer to the
selected variant. The selection mechanism works in four steps.

4.1 Step 1. Defining Variable Functions

This step is to define functions to handle the selection process for the classes which
have variation points. As shown in figure 2, variation points are realized as functions
which include a switch statement, and variants are specified as case clauses within the
switch statement.

Component

Class A

static ChoiceType c1;

public:
static void Select1(Choicetype cc){

c1 = cc;
}

public void foo1(){
switch(c1) {
case 1: … //algorithm 1
case 2: … //algorithm 2

}
}

Class B

<< interface >>
Customize

Select1 (choice);
Select2 (choice);
…

<<interface>>
Provided

foo1();
foo2();
…

Customization by

Selecting a Variant

Variation Point

Var
iat

ion
 Sto

re
d

Variants

static ChoiceType c2;

static void Select2(){…}
void foo2(){…}

Fig. 2. Mechanism of Selection Technique

In the figure 2, the function foo1 () of class A realizes a variation point and each
case clause of foo1() realizes an associated variant. If foo1() is a function computing
a temperature, the unit of temperature can be a variation point with two variants;
Centigrade and Fahrenheit. Consequently, one case clause is an algorithm using
Centigrade and the other case clause can be an algorithm using Fahrenheit.

4.2 Step 2. Defining Static Attributes and Operations for Customization

This step is, for each class in a component, to define attributes for storing selected
variants and to define customize operations that read selections made by clients and
store the selected variants in these attributes. Once the selections are (possibly
persistently) stored in these attributes, further invocations of foo1() operation will
refer to the values stored in the attributes.

In this way, one-time customization has a persistent effect on the variability. In
order to keep the value of c1 for a long period of time or persistently, the value must
be stored in a secondary storage such as a file or a database. If the value isn’t stored, it
should be customized at a re-installation time such as Web Application Server (WAS)
rebooting. The customization activity ends at this moment.

 Variability Design and Customization Mechanisms for COTS Components 61

4.3 Step 3. Defining Customize Interface

This step is to collect customize operations in various classes in a component into a
single customize interface. In figure 2, Select1 (Choicetype cc) and Select2
(Choicetype cc) are customize operations; Therefore, they are included in the
customize interface of the component. The component consumer sets the variants
using this interface to customize components.

4.4 Step 4. Setting Variants

This step is to customize components using customize operations. For example, a
component consumer invokes a customize operation, Select1(choice), with a
parameter setting on an appropriate variant. The actual argument of the method is
now stored in a static attribute c1 by the assignment statement of Select1() method.
As a result, further invocation on foo() will refer to this attribute. Now, customization
on components is completed, and the operations in the Provided interface are
invoked.

4.5 Remarks for Realizing Attribute Variability

Selection technique can be applied to various types of variability; attribute, logic,
workflow, and persistence variability. The mechanism requires special attention when
realizing attribute variability.

Selection mechanism for realizing attribute variability utilizes the mechanism of
generic classes, which capture common behavior and instantiate concrete classes of
specific data types. For example, the template construct of C++ provides the
mechanism of generic classes.

The variation points are realized as functions which include a switch statement, and
variation on data type is specified as case clauses within the switch statement. The
objects which have different data type are created by the case clauses. Each case
clause includes a statement to create an object that has attributes of an appropriate
data type.

As shown in figure 3, the component includes two classes; class A and class
Account which have variation points, and accountID and createAccount(), of the
attribute variability type. Class A has a attribute variability on a variation point
createAccount(); this variation point has already implemented possible types of
accountID using a switch-case statement. Furthermore, class Account has attribute
variability on a variation point accountID; this variation point has been implemented
using a parameterized type concept.

A static int attribute c in Class A stores variants. A createAccount() method in
class A performs two things according to variation storage c. The first thing is to
instantiate template class Account conforming to c, the second thing is to create a new
account object with particular type of accountID. If it can be an integer type or string
type, the attribute is instantiated by “new Account<int> (12932)” and “new
Account<string> (“AZ129”)” statement.

62 S.D. Kim, H.G. Min, and S.Y. Rhew

Component

Class A

static int c;

public:
static void Select(int choice){
c = choice;

}
void createAccount (){

sw itch(c) {
case 1: //Variant 1 using integer ID

Account<int> *iAccount;
iAccount = new Account<int> (12932);
break;

case 2: //Variant 2 using String ID
Account<string> *sAccount;
sAccount = new Account<string>(“AZ129");

…
}

<< interface >>
Customize

Select (choice);
…

<<interface>>
Provided

createAccount();
…

Customization by

Selecting a Variant

Variation Point

Variation Stored

Variants

Class Generic Account

Tmp accountID;
double balance;

public:
Account(){};
Account(Tmp id){

accountID = id;
};
Tmp generateID(){};
Tmp getID(){};
…

Tmp

<<use>>Variation Point

Fig. 3. A Mechanism of Attribute Variability using Selection Technique

5 Plug-in Technique

Plug-in technique is used to assign an external variant to a variation point of a
component through a customize interface. By passing references of objects to
components and setting these functions are objects invoked inside components,
application-specific functionality is defined and supplied to the components. In this
way, components can be customized for each application.

The effects of customizing components should be persistently stored in and around
the components. With the plug-in technique, this is done by persistently maintaining
the references, functions or objects passes as parameters.

The plug-in technique can be applied to various types of variability; attribute,
logic, workflow, and persistence variability.

Component

<< interface >>
Customize

Class A

static C* obj;

public static PlugIn (* plugObj){
this.obj = plugObj;

}
public void foo2() {

obj->f2();
};
…PlugIn (C* obj);

…

<<interface>>
Provided

foo();

Class B

. . .

Abstract Class C

virtual f2();

C1

f2() { . . . }

class C1 : public C {
void f2() {

//appropriate logic;
}

}
…
C1* c1;
PlugIn (c1);

A Variant

Customization by

Plugging a Variant

Variation Point

Var
iat

ion
 St

or
ed

Variants

Fig. 4. Mechanism of Passing Pluggable Objects

 Variability Design and Customization Mechanisms for COTS Components 63

5.1 Step 1. Defining Variable Functions

This step is to define the functions which handle the plug-in process for the classes
which have variation points. The functions have hot spots for unknown variants. The
hot spots will be filled by external functions and objects.

As shown in figure 4, an object as a variant can be plugged into a component.
Variation points include object pointers that are hot spot. The object pointers will be
plugged by a component consumer.

5.2 Step 2. Defining Static Attributes and Operations for Customization

This step is, for each class in a component, to define attributes for storing references
of plugged functions and objects, and to define customize operations that read
functions or objects made by clients and store the plugged functions or objects in
these attributes. Once the references of functions and objects are (possibly
persistently) stored in these attributes, further invocations of foo1() operation will
refer to the external functions. It is shown how pluggable functions and objects can be
passed on to a component as a component customization technique.

To show an example of pluggable objects, In figure 4, the method foo2() has a
logic variability and the variation point is the method f2() inside foo2(). Hence, each
family member may supply its own implementation of f2().

5.3 Step 3. Defining Customize Interface

This step is to collect customize operations in various classes in a component into a
single customize interface. A component has a customize interface which takes the
value or references of external elements and assigns it to its corresponding variation
point.

In figure 4, an external object c1 must be plugged into obj inside the component.
To instantiate this variation point with an appropriate object, a customize interface is
defined which contains PlugIn (Classname* Obj) method. Now, a family member can
pass a reference to its own object that is extended by abstract class C. Class A stores
the variant object that has the appropriate logic. The component client invokes the
foo() function. The foo2() function invokes the f2() method in a variant object by the
dynamic binding of the object-oriented technique.

The method of PlugIn(void (*fn)()) and PlugIn (C* Obj); are customize operations;
thus, they are included in the customize interface of the component. Component
consumer sets pluggable functions and objects using this interface to customize
components.

5.4 Step 4. Setting Variants

This step is to customize components using customize operations. A component
consumer makes an appropriate object that should be inherited from abstract class.
The consumer invokes PlugIn (C* Obj) with the object. Therefore, further invocation
on foo1()and foo2() will run the plugged parts.

64 S.D. Kim, H.G. Min, and S.Y. Rhew

6 External Profile Technique

External Profile technique is used to assign an external variant to a variation point of
a component through an external profile such as a XML file. The external profile
describes variants for customization. This can be done by storing the values of
external profile. If a variant is changed, the component consumer only modifies the
profile.

6.1 Step 1. Defining Variable Functions

The step for customization is similar to the technique of passing pluggable object.
Variation points are realized as functions which include a sentence to read the variant.
They will be read by XML profiles.

How variants in external profile can be passed on to a component as a component
customization technique are exhibited. Figure 5 shows a component which contains
class A. The class has the method foo() that is a variation point which is resolved by
an external profile.

Component

ReadProperty();

Class A

Property p1; // Variation Point
Property p2;
…

public static ReadProperty (){
p1 = getProperty();
. . .

}
public static PlugIn(file) {

p1=getProfile(file);
}
void foo() {

f1(p1);
. . .

};

Read a Variant

<< interface >>
Customize

ReadProperty();
PlugIn(Profile file)
…

<<interface>>
Provided

foo();
External Variant

Read

Profile

Profile file;
PlugIn (file);

External Variant

Profile

or

Fig. 5. Mechanism of ‘Read the External Profile’

6.2 Step 2. Defining Static Attributes and Operations for Customization

The variable function reads variants from an external profile that includes variants for
a family member. The component consumer invokes the ReadProperty() in the
Customize interface, the ReadProperty() in Class A reads and analyses the external
profile that should have a fixed location. The method ReadProperty() knows the
position of the external profile.

In a different other mechanism, a component consumer invokes the PlugIn
(profileFile) in Class A. The function reads and analyses the external profile. The
profile does not have a fixed location. This technique is used to assign an external
profile to a variation point of a component through a customize interface. These
customize operations read variants from the external profile and store variants to the

 Variability Design and Customization Mechanisms for COTS Components 65

attributes. Therefore, the customize operations read XML files. Using Simple API for
XML (SAX) rather than Document Object Model (DOM) is preferred.

However, the customize mechanism may read a XML profile once when a
component consumer tailors components. The whole document is not needed to be
fed into memory using a tree structure. There is no control over the order. The
customize mechanism prefers to SAX rather than DOM. The External Profile
technique can be implemented using Java and SAX API.

6.3 Step 3. Defining Customize Interface

This step for customization is similar to the technique of Selection and Plug-In. This
step is to collect customize operations in various classes in a component into a single
customize interface.

6.4 Step 4. Setting Variants

This step is to customize components using customize operations. The External
Profile can be described by a XML file. For example, variability attributes are
grouped thus; Attr, Logic, and Workflow in figure 6. If the requirement of the target
system is changed, then the component consumer only modifies the XML profile.

<?xml version=”1.0”>
<Variability>
 <AttrType variantType = “var1” >…</AttrType>
<AttrType variantType = “var2” >… </AttrType>
<LogicType> … </LogicType>
<WorkflowType> ...</WorkflowType>
. . .
</Variability>

Fig. 6. Example of Variant Profile using XML

7 Assessment

In this paper, we propose variability design and customization mechanisms for COTS
components. Our mechanism addresses variation types and scopes for variability
mechanism. It is to increase component reusability and maintanability. We now
compare our work to other representative works.

The catalysis presents two types of variability mechanism using inheritance.
Keepence’s work suggests three types of variability mechanism. However, these
researches do not include detailed implement technique. Anastasopoulos’ paper
presents variability and feature type. However, the research is used to whitebox
component. Svahnberg’s research suggests five types of variability type. However,
the research does not include inner detailed mechanism.

Our mechanisms are challenging to be able to customize blackbox components
without accessing their source code. If new requirements that were covered by
customization mechanism are discovered, we only select or plugin each variant by

66 S.D. Kim, H.G. Min, and S.Y. Rhew

customizing interfaces to maintain components. Therefore, maintanbility can be
enhanced by using the mechanism.

8 Concluding Remarks

As components are more for inter-organizational reuse, we need to model variability
as well as commonality. One of the common forms of reusing COTS components is to
acquire and customize them for each application. Therefore, components must be
developed with consideration of commonality and variability in a domain.

In this paper, we present a comprehensive set of techniques to design components
with variability so that blackbox form of components can be customized effectively
only through interfaces. The COTS component is usually blackbox component. We
focus practical applicability of customization techniques which can be implemented
in popular CBD platforms.

The four types of component variability are covered by our customization
mechanism. We proposed three techniques for variability implementation; Selection,
Plug-In and External Profile technique. The techniques were presented more detailed
customization methods. Through the three customization mechanism, we believe that
the applicability, reusability, and maintainability of components can be greatly
increased.

References

[1] Kim, S., “Lesson Learned from a Nationwide CBD Promotion Project,” Communications
of the ACM, Vol. 45, Issue. 10, Oct., 2002.

[2] Kim, S., and Park, J., “C-QM: A Practical Quality Model for Evaluating COTS
Components,” Proceedings of IASTED International Conference on Software Engineering,
Innsbruck, Austria, Feb., 2003.

[3] Aanastasopoulos, M., and Gacek, C., “Implementing Product Line Variabilities,”
Proceedings of the 2001 symposium on Software reusability: putting software reuse in
context, Toronto, Cananda, May, 2001.

[4] Keepence, B., and Mannion, M., “Using patterns to model variability in product families,”
IEEE Software, Vol. 16, Issue. 4, July-Aug., 1999.

[5] Svanhnberg, M., and Bosch, J., “Issues Concerning Variability in Software Product
Lines,” Lecture Notes in Computer Science 1951, Proceedings of the Third International
Workshop on Software Architectures for Product Families, 2000.

[6] Choi, S., Chang, S., and Kim, S.,"A Systematic Methodology for Developing Component
Frameworks," Lecture Notes in Computer Science 2984, Proceedings of 7th Fundamental
Approaches to Software Engineering (FASE'04) Conference, 2004.

	Introduction
	Related Work
	Foundation
	Selection Technique
	Step 1. Defining Variable Functions
	Step 2. Defining Static Attributes and Operations for Customization
	Step 3. Defining Customize Interface
	Step 4. Setting Variants
	Remarks for Realizing Attribute Variability

	Plug-in Technique
	Step 1. Defining Variable Functions
	Step 2. Defining Static Attributes and Operations for Customization
	Step 3. Defining Customize Interface
	Step 4. Setting Variants

	External Profile Technique
	Step 1. Defining Variable Functions
	Step 2. Defining Static Attributes and Operations for Customization
	Step 3. Defining Customize Interface
	Step 4. Setting Variants

	Assessment
	Concluding Remarks
	References

